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Abstract

This thesis has two themes. The �rst is the structure of the mind – how does the mind break

down into parts, and how do those parts relate to one another? The second is the computational

complexity inherent in seeing and thinking – how are we able to see and think when these problems

appear to be computationally intractable? The motivating idea is that managing this computational

complexity is one of the central forces shaping the structure of the mind. We see and think in the ways

we do because these are rare solutions to hard problems. This means we can use the theory of

computational complexity to shed light on the structure of the mind – ruling out theories that fail to

account for the computational tractability of the mind and focusing attention on those that might. In

that spirit, Chapter 1 lays out a framework for thinking about the complexity of an important class of

mental processes and applies the framework to perception, using it to make progress on the question of

how what we think in�uences what we see. Chapter 2 argues that perception (e.g. seeing and hearing)

and cognition (e.g. reasoning and planning) take di�erent strategies to tame the complexity they face,

and uses this fact to explain otherwise puzzling di�erences between seeing and thinking. Chapter 3

outlines the unique computational challenge facing thinking and proposes a novel account of how we

think designed to meet that challenge, highlighting key points of similarity and di�erence between our

minds, the computational models of cognitive science, and the neural networks of contemporary AI.

In each chapter, inquiring into the structure of the mind via computational complexity helps us see

both how the mind works and why it works that way. In this way we begin to reverse engineer the

blueprint of the mind.
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Introduction

When people learn of an event in the news, it can in�uence their voting behavior, their

investment decisions, or their vacation plans, often in sensible ways. But how are people able to

recognize such wide ranging consequences of new information, when the potential connections are

nearly endless? Similarly, when people open their eyes, they e�ortlessly see the 3D world before them,

despite the fact that the light hitting the retina is compatible with an in�nite number of di�erent 3D

scenes. How do we do it? In both cases, the space of ways the world could be is vast, but must be

navigated quickly in order to see and think. The challenge here is so great that, when viewed through

the lens of theoretical computer science, the problems the brain solves seem like they should be

impossible. This threat of computational intractability has at various times been taken to entail very

controversial theses about the mind – that the mind could not be uni�ed, that thinking could not be

realized by symbolic operations, that true arti�cial intelligence is impossible, or that the computational

theory of mind must be false. Whether any of these arguments are sound is unclear. What is clear is

that explaining computational tractability of the mind is a central challenge for cognitive science. This

dissertation addresses several aspects of this challenge and uses it to shed light on how the mind works.

The threat of computational intractability touches on many di�erent themes – from questions

in the philosophy of mind and epistemology (questions like, how rational are we? And, how rational

can we be?) to questions in the philosophy of AI (What kinds of minds are possible? How do di�erent

AI methods deal with intractability?). The central focus of this dissertation are the consequences of

tractability for cognitive architecture. Cognitive architecture is the study of how the mind breaks down

into parts and how those parts relate to one another. These are questions that have been with

philosophy for a long time – from Plato’s tripartite theory of the soul to the faculties of the early

moderns1 – and which are being investigated using empirical, computational, and theoretical methods

today. The central thought behind this dissertation is that computational tractability is one of the chief

challenges facing the mind, and cognitive architecture is one the chief tools that allows the mind to

1 Architectural distinctions play a central role in many key projects of the early moderns, such as the distinction between the
Will and the Intellect in Descartes' Meditations or between Reason, the Senses, and the Imagination in Hume’s argument
for skepticism about causation.
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tame intractability. By investigating how that is done, we uncover important truths about the structure

of the mind and explanations as to why it is that way.

The history of tractability in computational approaches to intelligence goes back to the

beginning of both cognitive science and AI. The intractability of important classes of problems solved

by the mind has been the chief force holding AI back since its inception. Early AI pioneers were

buoyed by initial successes in automating reasoning and planning that many in the 60’s thought that

human-level intelligence was just a decade or two away.2 What ultimately held them back was that the

methods that worked for very small scale problems became infeasible when applied to larger problems

because of the ways computational costs scale. This left real world problems far out of reach. The

infamous Lighthill report, penned by British mathematician James Lighthill in 1973, which led to a

dramatic drop in funding for the �eld, an ‘AI Winter’, �agged tractability as the core challenge facing

AI. It pointed out that the �eld had not made discernable progress on that problem in its �rst 15 years

of life (Lighthill 1973). Writing a year earlier in ‘What Computers Can’t Do’, Hubert Dreyfus also

highlighted this same pattern of early successes on small problems followed by failure to scale methods

to larger instances. While Dreyfus lacked the computer science concepts to make the argument precise,

he highlighted several ways the human mind comes equipped to deal with tractability, all of which had

so far eluded automation (Dreyfus 1972).

These problems that haunted classical AI methods reappear in a new guise for the models in

vogue today. Computational costs can be traded o� against one another – for example, run time costs

against training costs and data requirements. Contemporary AI methods do just this, trading speed at

solving hard problems for massive data and training. For example, today’s language models – AI

systems for processing language – are trained on upwards of 10,000 times more linguistic data than are

people (Wardstadt & Bowman 2022). Training costs for the most competent models run in the

hundreds of millions of dollars (Cottier 2023). Discussion has turned to the possibility of billion-dollar

training runs (Amodei 2023) and some have made the case that the availability of data may soon

2 Claude Shannon, for example, predicted in 1961 that the ‘robots of science �ction fame’ are 10-15 years o�, while Herbert
Simon predicted that “machines will be capable, within twenty years, of doing any work a man can do” (1965, p. 96). Alan
Turing more conservatively predicted that we would have a machine that passed the Turing test by the year 2000 (1950).

8



become a bottleneck (Villalobos et al. 2022). Undaunted by these challenges, leaders in the �eld have

again started to predict that human-level intelligence is imminent, with predictions ranging from 2

years o� (Amodei 2023) to 5-20 (Bengio 2023). Will this be like last time? Or are these problems now

surmountable? Both are live options. Understanding where we are requires careful thought about

computational tractability.

Much like for AI, tractability is a central challenge for cognitive science. This isn’t surprising –

AI systems and the computational models of mental processes that cognitive science seeks to develop

are two sides of the same coin. An AI system that can do some task is thereby a potential hypothesis

about how the human mind does it, while a computational model of human performance on that task

represents a potential AI solution to it. Tractability problems that haunt AI show up in similar ways in

cognitive science. Many computational models that beautifully capture human behavior on some toy

problems cannot be scaled up to model human behavior on similar but larger problems out in the

world. This fact has been appreciated by many working in the �eld. Limitations on computational

resources have been o�ered programmatically as a general constraint on theories of mental processes

(Icard 2018; Gri�ths et al. 2015; Lewis et al. 2014). Intractability has been used to argue against broad

classes of cognitive models (Kwisthout 2011) and to motivate ‘resource rational’ explanations of

various e�ects in the �eld (Lieder et al. 2014). Most ambitiously, tractability has been used to argue

that mental processes can’t be symbolic in nature (Churchland 1989), that they can’t be probabilistic

(LeCun 2022), and even that they can’t be computational (Fodor 2000). Here again, we’re left with

many questions – Which of these arguments hold water? And how can we use tractability as a

constraint on our theories of the mind? Answering these requires building a framework for thinking

about computational tractability as it applies to the mind.

A �nal theme in this dissertation are questions of cognitive architecture. Inquiry here has

historically foregrounded two broad categories of questions. The �rst relates to the di�erence between

perception (e.g. seeing and hearing) and cognition (e.g. reasoning and planning). Perception and

cognition have very di�erent psychological properties – perception tends to be fast (we see things

without any noticeable delay), automatic (we see whatever is in front of us when our eyes are open),
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and autonomous (we see regardless of whatever else is going on in the mind). In contrast, cognition

tends to be slow (happening with noticeable delays), deliberate (we choose what to think about), and

dependent on what else is going on in the mind (we can get distracted or have to stop thinking to think

about something else). Much work in cognitive architecture has been dedicated to understanding these

di�erences, asking questions like: what marks the di�erence between perception and cognition? What

explains why more super�cial di�erences exist? And, how do these two systems interact? Views in this

category highlight potential di�erences in the formats the two use to represent (Block 2022), in their

core functions (e.g. Beck 2018), in the way in which information is accessed (Fodor 1983), or in the

contents they can represent at a given time (Green 2020). The second broad category of questions in

cognitive architecture deals with the structure of cognition – Is the part of the mind responsible for

reasoning and planning uni�ed or disuni�ed? In what ways? And, are there di�erent kinds of

cognition? A large space of views have been explored here, with arguments that the mind is uni�ed (e.g.

Fodor 2000), composed of isolated parts hardwired by evolution (e.g. Pinker 1997, Carruthers 2007),

or broken down into separate belief stores acquired through experience (Bendaña & Mandelbaum

2021), as well as views about the various kinds of thought, including di�erent kinds of belief (e.g. Van

Leeuwen & Lombrozo 2023) and di�erent kinds of reasoning and planning, e.g. the famous System 1

– System 2 distinction due to Kahneman and Tversky (Kahneman 2011). Questions of cognitive

architecture have consequences throughout cognitive science (what mental processes can we avail

ourselves of when explaining various phenomena?), AI (might arti�cial minds have parts for much the

same reason that human minds do?), and decision theory and epistemology (how ought we to reason

with minds like ours?).3

Where tractability has met cognitive architecture in the past, its treatment has often been

driven by intuitions about what makes a problem hard or easy, rather than systematic treatment. This

has led to hasty, and, at times, very strange conclusions. For example, previous work has operated under

the assumption that information access as a key driver of computational costs. This has led di�erent

3 Architectural questions relevant for epistemology and decision theory include the extent the mental processes that are
rational evaluable (Siegel 2012, Jenkin 2020), the nature of belief and introspection (e.g. Schwitzgebel 2008, Icard 2013),
and how we ought to reason with minds like ours (e.g. Rayo & Elga 2021, Friedman 2020).
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theorists to conclude that perception must be informationally encapsulated (cut-o�) from cognition,

that cognition must be broken up into many parts operating over isolated bodies of information, or, as

noted above, that the computational theory of mind must be false. These are clear examples of what

goes wrong when we lack a systematic understanding of computational tractability as it is relevant for

the philosophy of mind. A more systematic framework, like that o�ered in Chapter 1, changes the

landscape signi�cantly. Many of these previous conclusions can be outright rejected (see Chapters 1 &

3). Some are turned on their head – e.g. �nding that cognitive in�uences may help, rather than hinder,

perceptual tractability (Chapter 1). And new insights into the mind can be gleaned – e.g. insights into

how di�erences in the information available to perception and cognition can explain di�erences in

their speed and accuracy (Chapter 2), or into how cognition can approximate reasoning over very large

bodies of beliefs by reasoning in principled ways over just the most relevant beliefs (Chapter 3).

Now is the time to be thinking about the issues. Progress in AI and computational modeling

has reshaped the �eld in several relevant ways. First, better AI methods are leading to more successful

and more diverse models of human mental processes, o�ering both the opportunity to understand the

di�erences between them and the tools to explore new directions. Second, AI systems are permeating

our lives; we increasingly need to be able to reason about what they can and can’t do. Our intuitions

are all too often informed by glib comparisons between machines and people that don’t hold up in

practice – an AI system, for example, that can ace a medical exam may nevertheless fail in ways human

doctors never would. Systematic comparisons of AI systems and human mental processes can help us

build understanding here. Finally, as gestured above, human minds and AI systems face some of the

same problems of tractability. These include challenges that the �eld of AI is starting to grapple with in

the pursuit of human-level intelligence. Lessons about how human minds are tractable can help in

building such systems as the challenges of scale become apparent.

Chapter 1: How Is Perception Tractable?

Can what we think in�uence what we see? When we believe or desire something, can that

change the way the world looks to us? This debate matters for both foundational questions in

11



cognitive architecture and for epistemology. Various authors have proposed that immunity to in�uence

from cognition is what di�erentiates perception from cognition. That is, the two are distinguished by a

�rewall that permits information to �ow only in one direction. If true, this gives us our �rst handhold

on a big division in the mind. On the epistemology side, this question of in�uence matters for how we

can trust perception to supply new evidence for our beliefs. In general, perception seems to be a good

way to learn about the world. But if a bottle of mustard looks to me like a lemon only because I

believed there was a lemon there, then treating my perception as support for my belief amounts to a

kind of circular reasoning.

The empirical literature on whether perception can in�uence cognition is decidedly mixed.

There is a large body of studies, spanning decades, purporting to show e�ects of cognition on

perception. But there have also been large scale rebuttals, demonstrating important �aws that may

show up in most or even all of these studies. When the empirical �ndings are so hotly contested,

theoretical arguments take on an important role. One of the core theoretical motivations for the

encapsulation of perception is a tractability argument. The thought behind these arguments is that if

vision had to wade through the contents of cognition before deciding e.g. if there was a panther in a

tree, then vision couldn’t happen on the timescales needed for survival (Fodor 1983, Pylyshyn 1999,

Mandelbaum 2017, Quilty-Dunn 2019). The number of computational steps needed for a

cognition-informed perception then would make perception too slow to be usable.

In the �rst chapter, I argue that this isn’t right. I o�er a framework for thinking about

computational tractability in cognitive science, drawing on concepts from computational complexity

theory, psychophysics, and observations of engineered AI systems. I then use it to show that the

computational costs intrinsic to visual processing are great enough on their own that accessing

information from cognition does not make a meaningful di�erence to the costs of perception. More

speci�cally, perceptual inference problems (e.g. recovering 3D scene from 2D retinal image) have costs

that grow rapidly with the number of independent variables (shape, color, edges) that must be

recovered jointly, while psychophysical results suggest that many dimensions are in fact recovered

jointly. (One example of this kind of joint recovery is an e�ect known as Shape from Shading, where
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the luminance gradient on a 2D image suggests a 3D shape. There are many such examples.) We can

think about the size of perceptual inference problems as lower bounded by the number of jointly

recovered variables. This perspective suggests that most of the costs of perception are the costs of

perceptual inference. I argue that this theoretical perspective �ts with our experience of engineered

systems. While inference is often prohibitively expensive and is frequently the bottleneck for

intelligence systems, search is cheap and fast, even over large databases. A typical Google search, for

example, searches Google’s copy of the internet and takes a mere 500ms to run. If this is right, there is

no good tractability argument against cognitive e�ects on perception.

The framework gives us insight into the origin of the computational costs of intelligent

behavior, but also into how those costs can be tamed. One of the key resources for managing the

computational complexity of inference is prior information about where in the space of possible

solutions an algorithm ought to search. I show how this general principle turns the encapsulation view

on its head. There may be tractability arguments in favor of cognitive e�ects on perception, where such

information can help perception operate quickly.

Chapter 2: Why Is Seeing Fast And Thinking Slow?

Seeing is fast, while thinking is slow. When we open our eyes, we see without any noticeable

delay. Canonical cases of cognition take more time, often with noticeable delays (we catch ourselves

midthought, and we watch the gears turn in somebody’s head). The existence of such a speed

di�erence is widely believed in psychology and philosophy. It is often invoked as the basis for

diagnosing new contents in perception – such as arguments that we see demographic features, such as

age, race, and gender, rather than inferring these from what we see (Colombatto et al. 2021). In light of

the failure of encapsulation however (see Chapter 1), we lack an account of why seeing is fast and

thinking is slow. This puts arguments about perceptual contents on uncertain theoretical footing and

deepens the mystery about why perception and cognition should have such di�erent high-level

properties. This chapter proposes and defends a computational explanation of the speed di�erence,

using it to shed light on otherwise puzzling �ndings in psychology and neuroscience.
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To start with, I look at the evidence that there is a speed di�erence between perception and

cognition. The idea that there is a di�erence has broad support in the �eld, but has not been carefully

investigated. The empirical evidence is weaker than one might think. It is extremely clear that

perceptual processing happens very fast, but comparable processes in cognition are much less

well-studied. I o�er what I believe to be the most thorough defense of the speed di�erence in the

literature, while �agging several places where more research is needed to tighten the case.

After exploring the evidence for the speed di�erence, I turn to possible explanations. Using

several case studies as a way to formally ground the argument, I show that several straightforward

analyses based on computational complexity fail to explain the speed di�erence. These analyses only

deepen the mystery. It seems perception solves problems that are signi�cantly harder than those solved

by cognition in important respects, and yet solves them more quickly.

I propose a new computational explanation for the speed di�erence. The key idea is that there

is a trade-o� between memory and online computation. When problems are similar enough and have

been encountered often enough, relatively more of the work of online processing can be o�oaded to

learned data structures. I make this idea formally precise drawing on information theory and

probabilistic inference methods. Perception and cognition strike di�erent points in this trade o� –

with perception relying relatively more on memory to solve its problems. Extensive prior exposure to

similar problem instances across ontogeny and phylogeny allows perceptual processing to be initialized

closer to solutions, requiring much less online computation to deliver highly accurate answers to

demanding problems. This strategy is unavailable to cognition, which must maintain a higher degree of

�exibility to solve a wider diversity of problems. This gives us a deeper understanding of why

perception and cognition di�er and adds to our repertoire of hallmarks for telling between perception

and cognition. I end by showing how this computational di�erence helps to shed light on �ndings in

perceptual neuroscience.

Chapter 3: An Architecture for Central Cognition
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When we learn new information we can recognize the implications of that information for

disparate areas of our lives. When we see an event on the news, for example, we can recognize its

signi�cance for our voting behavior, travel plans, or the well-being of a friend. The commonsense view

of cognition is that the mind is uni�ed in the sense that we can consider connections between any of

our beliefs and are at least reasonably good at noticing relevant connections. On the face of it,

computational tractability considerations suggest this commonsense picture ought to be impossible.

There are so many possible connections to make between beliefs and only a negligible proportion of

these are relevant on any given occasion. Moreover, which connections are relevant is highly

context-sensitive – governed by ever changing background beliefs and auxiliary hypotheses.

Determining which connections are relevant to draw on a given occasion would seem to require

nothing short of evaluating each one – an impossible task. The resulting tractability problem for

cognition is su�ciently dire that it has been taken at various times to establish several surprising theses,

including that the computational theory of mind must be false, that human-level AI is impossible, or

that cognition must be fundamentally disuni�ed, composed of parts dedicated to processing di�erent

kinds of contents rather than a singular mind.

This chapter aims to reconcile the commonsense view of cognition with the computational

theory of mind. I start by making the above impossibility arguments more precise, showing how they

rely on a critical premise, that what is relevant to think about cannot be tractably computed. I then

show how certain methods in contemporary AI, large language models (models trained on large bodies

of text to produce language semi-cogent prose) provide a counterexample by tractably computing

approximate relevance. They do this by trading o� extensive prior exposure to the domain with online

computation (see Chapter 2).

The ability to tractably compute relevance represents an important step in the direction of an

account of tractable cognition, but it is not enough on its own. An important further requirement is

the ability to reason in principled ways over relevant considerations. I argue using a range of case

studies that language models are lacking here – they fail to reason normatively in many places where
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people succeed. This suggests a deep di�erence in the way that people and language models think and

places a further requirement on an account of central cognition.

I propose a new architecture for cognition, which builds on these successes of connectionist

models while acknowledging their shortcomings. The key is to exploit the ability to tractably compute

relevance to build small, bespoke models tailored to individual tasks. When these models are small

enough, principled operations for reasoning (such as bayesian inference or planning algorithms) can be

tractably computed over them. Since reasoning or planning over just a small set of highly relevant

considerations can approximate a solution to reasoning or planning over a much larger body of beliefs

in many cases, an architecture of this kind can approximate the reasoning of a system with much less

stringent computational limitations.

A theory of how the mind could be both uni�ed and tractable allows us to reconcile the

commonsense view of the mind with a computational theory of mind. It sheds light on the ways in

which our minds are both uni�ed and disuni�ed. To a �rst approximation, we are uni�ed in the sense

that we can reason about anything. And disuni�ed in the sense that we can reason only about a small

fraction of things at once. I end by drawing out some consequences of this view for epistemology,

decision theory, and the philosophy of AI.
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Chapter 1: How Is Perception Tractable?

Abstract: Perception solves computationally demanding problems at lightning fast speed. It recovers

sophisticated representations of the world from degraded inputs, often in a matter of milliseconds.

Any theory of perception must be able to explain how this is possible; in other words, it must be able to

explain perception's computational tractability. One of the few attempts to move toward such an

explanation has been the information encapsulation hypothesis, which posits that perception can be

fast because it keeps computational costs low by forgoing access to information stored in cognition. I

argue that we have no compelling reason to believe that encapsulation explains (or even contributes to

an explanation of) perceptual tractability, and much reason to doubt it. This is because there exist

much deeper computational challenges for perception than information access, and these threaten to

make the costs of access irrelevant. If this is right, it undermines a core computational motivation for

encapsulation and sends us back to the drawing board for explanations of perceptual tractability.4

I. Introduction

Perception is hard. It is so hard that one of the main challenges of philosophy of cognitive

science is to account for how perception, of the kind seen in people, is possible at all. But why is it so

di�cult? One reason is that perception solves problems with staggering computational requirements.

It delivers reasonable solutions to these problems most of the time. And it does this all with very little

of the resources central to computation: very little time, very little energy, very little data. No method

in contemporary AI approaches these capabilities.5 We can call this dramatic e�ciency the

computational tractability of human perception.

5 For comparisons between human abilities and those of contemporary AI systems, see Lake et al. 2017, Kim, Ricci & Serre
2018, Marcus 2020, Firestone 2020, Jacob et al. 2021.

4 I am indebted to many people for help developing the ideas in this paper. For comments on (sometimes multiple) earlier
drafts of this paper, I’d like to thank EJ Green, Jack Spencer, Alex Byrne, Laurie Paul, Ned Block, Agustín Rayo, Josh
Tenenbaum, Bob Stalnaker, Kevin Dorst, and three anonymous referees for this journal. For help editing, I’d like to thank
Madeline Medeiros Pereira. For discussions of these ideas and others, I’d like to thank Luke Hewitt, Jon Gauthier, Eric
Mandelbaum, Johan Kwisthout, Scott Aaronson, and many others.
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A theory of perception should explain how perception is computationally tractable. (Previous

work in multiple traditions have defended tractability as a general constraint on mental processes and

such arguments form the basis for research programs such as bounded rationality (Simon 1997),

ecological rationality (Gigerenzer 2011), the tractable cognition thesis (Van Rooij 2008, Kwisthout

2011, 2018, Szymanik & Verbrugge 2018), and Bayesian resource rationality (Gri�ths et al. 2015,

Gershman et al. 2015, Icard 2018)). To date, however, few potential explanations have been o�ered.

One notable exception is Information Encapsulation Hypothesis, which holds that perception is

barred from accessing information stored in cognition. Proponents of the information encapsulation

hypothesis often o�er a computational motivation, suggesting that encapsulation helps account for the

tractability of perception (Fodor 1983, Pylyshyn 1999, Mandelbaum 2017, Quilty-Dunn 2019).6

Encapsulation, it is thought, explains (or partially explains) tractability by ensuring that perceptual

processing does not incur the computational costs of search through large stores of information in

cognition, as it would if perception were unencapsulated. Call this the Encapsulation Explanation of

Tractability (EET).

In this paper, I argue that we have no positive reason to believe the EET, and many reasons to

doubt it. Given what we know about the science of computational costs, information encapsulation

seems to be the wrong kind of thing to explain the computational tractability of perception. In

particular, encapsulation is ill-equipped to account for computational tractability because there exists a

vastly larger problem for perceptual tractability than the cost of information access. I argue that, in

light of the true landscape of computational costs inherent in perception, encapsulation can be neither

necessary nor su�cient for tractability and is unlikely to even be a di�erence maker.7

If this is right, the implications are threefold. First, while it is still an open empirical question

whether perception is informationally encapsulated from cognition, a core motivation for the thesis is

cut adrift. This leaves the thesis more dependent on the weight of the psychophysical and

7 I’ll consider that if encapsulation is any of these (necessary, su�cient, or a di�erence maker) then it is an explanation of
perceptual tractability.

6 Tractability is not the only motivation for information encapsulation – encapsulation has also been o�ered as an
explanation for striking psychophysical data, such as persistent illusions (see Muller-Lyer illusion).
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neuroscienti�c evidence, bereft of a computational raison d’être. Since the empirical question is hotly

debated (Macpherson 2011, Firestone & Scholl 2016, Lupyan 2017, Quilty-Dunn 2019, Green 2020),

the loss of computational motivation matters a great deal to how we view the thesis. At stake in the

encapsulation debate more broadly are issues of central importance to epistemology, such as whether

perception can be treated as justi�catory bedrock (Siegel 2012, 2017, Silins 2016, Jenkin 2020), and to

philosophy more broadly, such as whether any distinction can be drawn between perception and

cognition at all (Clark 2013) and how that distinction is to be spelled out if so (Phillips 2019, Green

2020).8

Second, our discussion places a strong constraint on future theories of perception. At the end

of the day, we do not know how perception is computationally tractable, but a deeper understanding

of the problem provides a better understanding of what a future solution must look like. I discuss

constraints on a future theory of perceptual tractability in Section (VI).

Finally, revisiting tractability arguments for information encapsulation has rami�cations for

theories of cognition more generally. If systems that are unencapsulated are thereby computationally

intractable, then the traditional view of a uni�ed mind post-perception is incompatible with the

computational theory of mind; the view that mental processes are computational processes.9 It would

follow that either central cognition too must break down into parts that are encapsulated from one

another (Tooby & Cosmides 1992, Pinker 1997, Carruthers 2004) or that the computational theory of

mind must be abandoned (Fodor 2000). A re-evaluation of the connection between encapsulation and

tractability will shed light on what is right, and what is wrong, with such arguments.

The paper proceeds as follows. Section (II) motivates the problem of computational

tractability as it pertains to perception. Section (III) presents the solution o�ered by information

encapsulation and the classical arguments for it. A formal de�nition of computational tractability as it

is relevant to debates in the science of mind is developed in Section (IV). Sections (V) and (VI) argue

9 I.e. processes characterized by an abstract causal organization that mirrors the stages of a formal computational process
(Chalmers 2011), in tandem with whatever relations to the environment are necessary to make some of those states
representations (Fodor 1975).

8 Information encapsulation is one way in which perception might be modular, but there are others.
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that there exists a much deeper problem of computational tractability than the one encapsulation was

designed to solve, while Section (VII) argues that, in light of this, encapsulation can be neither

necessary nor su�cient for tractability, and is unlikely to even be a di�erence maker. Some implications

of this for the future of tractability arguments are presented in Section (VIII). Section (IX) concludes.

II. Why There is a Problem of Tractability

A venerable tradition in philosophy and psychology holds that perception is computationally

tractable because it is informationally encapsulated from cognition (Fodor 1983, Tooby and Cosmides

1992, Pinker 1997, Pylyshyn 1999, Fodor 2000, Mandelbaum 2017, Quilty-Dunn 2019). In a moment

we’ll look at what information encapsulation is and how it is meant to address issues of tractability, but

before evaluating potential answers, we should get clear on the question. Why should we think that

perception has a computational tractability problem in the �rst place?

For the purposes of this paper, perception is the set of mental processes dedicated to gathering

information by way of the sensory surfaces (such as the retina for vision or the cochlea for audition).

This includes the �nal stages of these processes, the perceptual outputs.10 A good part of what

perception does is solve inverse inference problems, in which latent causes are recovered or ‘inferred’

from their proximal e�ects. In the case of human perception, the latent causes are distal objects and

their properties, and their proximal e�ects are their e�ects on the sensory surfaces, such as the retina,

skin, or cochlea. In the particular case of vision, a set of properties including the shape, orientation,

color, and distance of an object must be inferred from their joint e�ect – an image of colored light

projected onto the retina. In nearly all real world cases of inverse inference, the proximal e�ects

underdetermine the distal causes.

10 For many authors, these outputs are synonymous with perceptual experience, see e.g. Firestone & Scholl 2016, p.1: ‘There
is a deep sense in which we all know what perception is because of our direct phenomenological acquaintance with percepts
– the colors, shapes, and sizes (etc.) of the objects and surfaces that populate our visual experiences. Just imagine looking at
an apple in a supermarket and appreciating its redness (as opposed, say, to its price). That is perception… Throughout this
paper, we refer to visual processing simply as the mental activity that creates such sensations; we refer to percepts as the
experiences themselves, and we use perception (and, less formally, seeing) to encompass both (typically unconscious) visual
processing and the (conscious) percepts that result.’
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Inverse inference shows up everywhere in the mind, not just in vision. Audition performs

inverse inference when it separates out particular voices or other auditory objects from an

undi�erentiated stream of vibrations, as when listening to someone talk in a crowded room. It is not

limited to individual senses either. Perceptual inferences that recover the events associated with sounds

take inputs from both audition and vision (a fact responsible for the ventriloquism e�ect, see Alais and

Burr 2004), while the inferences that recover the shapes of objects take inputs from both vision and

touch (Ernst and Banks 2002). Nor is it unique to perception. Cognition, by which I mean the set of

mental processes of which reasoning and planning are paradigmatic examples, solves similar problems.

When we infer that it rained from the fact that the ground is wet (when it could have been the

sprinklers), that the neighbor is home from the fact that their car is outside (when they could have left

on foot or bike), or the identity of a criminal from the evidence at a crime scene (which is consistent

with any number of identities and scenarios), we are solving inverse inference problems. Other

examples are less obviously causal, but are formally homologous, such as learning concepts from a �nite

set of examples, consistent with multiple hypotheses about their content (Feldman 2000, Xu and

Tenenbaum 2007, Goodman et al. 2008) or learning the theoretical relations that govern a novel

domain (Gopnik et al. 2004, Tenenbaum et al. 2011, Ullman et al. 2012).

The fact that perception and cognition solve inverse inference problems is interesting because

these problems are hard. They’re hard enough that current methods for solving real-world inference

problems either take a very, very long time to run (Sokal 1997, Park & Haran 2018) or huge amounts

of time, energy, and data to train (Marcus 2020). The most recent work in AI illustrates these

challenges. Training state-of-the-art language models (which infer likely completions from portions of

sentences, for example, requires data sets on the orders of trillions of words (Brown et al. 2020) and

days or weeks of computing time on hundreds or thousands of machines (Narayanan et al. 2021,

Chowdhery et al. 2022). Contemporary vision models, which infer 3D-scene properties from images,

are similarly compute intensive (e.g. Karpathy 2021).

In contrast, people solve inference problems quickly, cheaply, and with little training data

(Lake et al. 2017, Marcus 2020). Why is the human mind so startlingly e�cient? How is inference in
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the mind possible on the timescales that human-beings solve them? This is the �rst question of the

tractability of the human mind. Call it the question of absolute tractability. Answering this question

should tell us how computational systems could operate to solve inference problems in roughly the

neighborhood of how long people take on those problems. Things that people solve in milliseconds

should not take days of compute time. Things that take humans hours to learn should not take

months. The question of absolute tractability applies equally well to both perception and cognition.

There is also a second question of tractability which is unique to perception. Even against the

backdrop of the computational e�ciency of cognition, perception stands out. While cognitive

inference problems, such as concept learning, take many trials, encompassing seconds or minutes in the

lab (Kemp et al. 2012) or hours or days in classroom and developmental settings (Carey 2009, Ullman

2012), perception solves its inference problems in record speed. For example, perceptual categorization

of natural scenes on the basis of category (in this case, ‘animal present’ or ‘animal absent’) can be made

within 150 milliseconds, as detected by EEG (a measure of the brain’s electrical activity; Thorpe et al.

1996), while rapid eye movements or ‘saccades,’ which require motor planning as well as perceptual

processing, can be made on the basis of similar categories in a few hundred milliseconds (Kirchener &

Thorpe 2006). Changes in the neural decodability of stimulus information shows that by 350

milliseconds processing in visual areas has largely run its course, with perceptual outputs passed on to

frontal, cognitive areas (Marti & Dehaene 2017).

Of course, speed alone is not impressive. It’s easy to answer a problem quickly if one is willing

to sacri�ce performance. In the limit, problems can be answered randomly as quickly as one can roll an

internal die. What is remarkable is perception’s combination of speed and performance. Findings that

support the optimality of perception (performance that reaches theoretical limits) are common in the

�eld (e.g. Kording & Wolpert 2004, Ernst & Banks 2002, Weiss et al 2002, see Ma 2010 for a review).

Other authors push back (see e.g. Rahnev and Denison 2016). Far less controversial is that perception’s

accomplishments are both impressive and unparalleled. It represents the world accurately enough that

we get by in the myriad tasks we undertake and the diverse and open-ended environments in which we

do them. Human beings rarely look at familiar objects and wonder what they are. We can pick out
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objects from a crowded visual �eld, recognize their distances and navigate to them, avoiding obstacles

in the process. And we do this in all manner of circumstances: in various weather and lighting

conditions, when viewed from di�erent angles, and in novel surroundings. While contemporary

machine learning systems can often beat human beings by a few percentage points in speeded

classi�cation tasks (Dodge and Karam 2017, Geirhos et al. 2018), human beings are unparalleled in

their ability to recover 3D-scene geometry (Spelke and Kinzler 2007), object parthood (Green 2017),

physical and relational properties (Wu et al. 2015, Hafri et al. 2013, Little & Firestone 2021), and the

consequences of these for high-level features such as stability (Battaglia et al. 2013, Ullman et al. 2017,

Hafri & Firestone 2021). Reproducing such accomplishments is the holy grail of computer vision.

There are then two distinct problems of the tractability of perception. The �rst, the problem

of absolute tractability, is common to both perception and cognition. This is the problem of how either

system is able to accomplish inverse inference on human-like timescales despite theoretical costs and

engineered systems that suggest compute times well beyond this (much more on this to come). The

other is the question of how perception manages to be so much more e�cient (more tractable) than

cognition, clocking in at speeds orders of magnitude faster than comparable processes in cognition. We

can call this the relative tractability of perception (relative to cognition). Theories of perception must

explain both the absolute and relative tractability of perception. This is a demanding requirement, but

pursuing it vigorously is likely to be productive. Insofar as most theoretical frameworks for perception

fail to account for tractability, insisting that a theory does so will help us cull the space of hypotheses as

to how perception works.

III. The Encapsulation Explanation of Tractability

An architecture of perception must explain perception’s impressive combination of speed and

performance, both absolute and relative to cognition. Proponents of information encapsulation

endorse the following explanation:
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Encapsulation Explanation of Tractability (EET): The computational tractability of

perception is explained by the information encapsulation of perception from cognition.

The EET invokes the key concept of information encapsulation, but what exactly is this? Proponents

of the thesis write:

Looked at this way, the claim that input systems are informationally encapsulated is equivalent

to the claim that the data that can bear on the con�rmation of perceptual hypotheses includes,

in the general case, considerably less than the organism may know. (Fodor 1983, p. 69)

This target article ... defends the position that an important part of visual perception ... is

prohibited from accessing relevant expectations, knowledge, and utilities in determining the

function it computes – in other words, it is cognitively impenetrable. (Pylyshyn 1999, p.1)

[This article focuses on]... traditional questions of whether visual perception is modular,

encapsulated from the rest of cognition, and “cognitively (im)penetrable.” At issue is the extent

to which what and how we see is functionally independent from what and how we think,

know, desire, act, and so forth. (Firestone & Scholl 2016, p. 2)

With all this in the background, we can give a more precise characterization of encapsulation:

System A is encapsulated from System B when A has a proprietary store of information that

excludes information stored in B. (Quilty-Dunn 2019, p.3)

Each of these quotes seem to turn on some common idea, but there is also signi�cant ambiguity. Fodor

writes only that the information available to perception is ‘considerably less’ than is available to the

entire organism. Pylyshyn prohibits access of the ‘relevant’ expectations, knowledge, and utilities,

although it seems unlikely that he thought the irrelevant varieties of these could be accessed. Firestone
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and Scholl are interested in the ‘extent’ to which what and how we see is independent from what and

how we think, know, and desire, while Quilty-Dunn endorses the generic, that ‘system A’s information

store excludes information (Some of it? All of it?) stored in B.’11

While the speci�cs might be hazy, the gist is clear – the encapsulation of perception means that

information in cognition is verboten for perception. Fodor thinks that the information available to

perception is considerably less than the organism may know because none of the information in

cognition is available to it. Pylyshyn points out that the relevant expectations, knowledge, and utilities

are prohibited because all of the expectations, knowledge, and utilities are prohibited.12 Firestone and

Scholl are interested in the extent to which what and how we see is independent from what and how

we think, know, and desire because they want to defend the view that perceptual processing is not

in�uenced by any of these. Information encapsulation then is a relational property. One system is

informationally encapsulated from another when the �rst is barred from accessing the information in

the second. In this case, the relevant kind of information encapsulation is the encapsulation of

perception relative to cognition.

The strongest version of the thesis is that none of the information in cognition is accessible to

perception. This universal reading is reasonably natural and satis�es the conditions given by each of the

quotes. It is further motivated by the content of the papers and chapters from which these quotes are

drawn.13 It is also possible that the universal reading is too strong. Perhaps it is enough if most of the

information in cognition is barred from access by perception. If this were an empirical paper, with the

aim of providing a counterexample to encapsulation, a lot would turn on whether encapsulation

theorists are committed to the universal thesis. As it stands, the project of this paper is to show that

information encapsulation makes at best a negligible contribution to an explanation of the

13 In each case, what follows are arguments challenging a swath of psychological results that have been taken to evince the
the accessibility of information in cognition on perceptual processing, either because such e�ects are consistent with an
explanation citing only information available in perception (Fodor 1983, Pylyshyn 1999), because the e�ects can be
reproduced where the theory of cognitive penetration predicts they should not be (Firestone and Scholl 2016), or because
e�ects that might look like cognitive penetration are in fact mediated by attention, rather than access (Quilty-Dunn 2019).

12 At least for early vision.

11   In context, it’s clear that the Quilty-Dunn quote should receive the universal reading.
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computational tractability of perception. For this, the strongest version of the thesis will do just �ne. If

a prohibition on all of the information in cognition is not enough to meaningfully impact tractability,

a weaker version of the constraint is unlikely to fare better.

The next question is, how is information encapsulation meant to explain tractability? Proponents of

the EET write:

… speed is purchased for input systems by permitting them to ignore lots of the facts. (Fodor

1983, p. 70)

One of the reasons theorists have been drawn to modularity theory is its evolutionary

rationale.... Roughly, the intuition is that during panther identi�cation what really matters is

accomplishing such identi�cation quickly... Searching through everything we know about

panthers in order to make an identi�cation would be extremely time consuming.

(Mandelbaum 2017, p. 10)

How are perceptual processes computationally tractable? ... If the processes that solved these

problems had to sift through all information stored in central cognition, they would face an

unwieldy computational burden... If instead perceptual processes are encapsulated, then they

need only check input against their proprietary stores of information ... Encapsulation can

therefore provide a uni�ed account of perceptual processes as computationally tractable

operations that occur outside of central cognition. (Quilty-Dunn 2019, p. 5)

The thought seems to be that retrieving information takes time, retrieving information from larger

stores takes longer, and retrieving the relevant information from a store of information as large as

cognition would take too long. By foregoing this expense, however, perception can be accomplished

tractably.
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We can call this basic idea the Haystack Idea. Finding a needle in a haystack is a hard problem

(hard enough that it has become an idiom for di�culty) and �nding relevant information in a huge

store of information poses a similar problem. Moreover, needle-in-a-haystack problems get harder as

the haystack gets larger.

If we run with this idea for just a moment, we can also get a sense for how the problem ‘scales,’

or gets harder, as the number of inputs changes. Intuitively, every additional entry makes the problem a

little bit harder in expectation. For concreteness, we can think of the set of possibly relevant entries as a

list. Entries on this list are information in whatever format one thinks that the mind represents it – this

could be a list of beliefs written in the language of thought (Fodor 1975, Goodman et al. 2015), natural

constraints (Marr 1982), or parameter values of graphical models (Danks 2014), to name just a few

possibilities. Under the pessimistic assumption that this list is unordered – that is, that we do not know

in advance where relevant information is to be found (Fodor 1983, 2000) – the expected number of

steps needed to �nd relevant information grows linearly with the number of entries.14 If the haystack is

large enough, search will take too long. Under these conditions, an arti�cial limit in the size of the

haystack, the encapsulation of perception relative to cognition, could explain the tractability of

perception. This then is the key idea motivating the EET. The EET holds that the tractability of

perception can be explained by avoiding the linear costs of search through the information stored in

cognition.15

A few clari�cations about the EET are in order before we continue. These concern the kind of

tractability (relative or absolute) that the EET is meant to explain, the kind of explanation the EET is

meant to o�er (whether a su�cient condition for tractability, a necessary condition, or a di�erence

15 Other operations, other than search, scale non-linearly, either in the number of entries or in other parameters. We’ll do a
deep dive into such costs in the sections to come. For our purposes now, the essential takeaway is that the costs of search
scale at worst linearly, even under strong pessimistic assumptions about the e�ciency of that search.

14 If sampling randomly over the unordered list, the growth in expectation of a geometric distribution with probability of
success i/n, where n is the number of entries where the information can be found and i is a constant. Deterministic search
over an unordered list (i.e. a list where order is independent of relevance) is equivalent to sampling randomly without
replacement, an unnamed distribution which also scales linearly in expectation as n grows. The costs are also linear in the
worst case, when all the information must be accessed, in which case the costs increase at a rate of exactly N steps per entry,
where N is the number of steps required for access.
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maker), and the empirical assumptions the EET requires to get o� the ground. I’ll look at each of these

in turn.

First there is the question of the target of explanation. We noted above that there are two

questions of tractability. One asks how perception could be tractable relative to cognition – that is,

why perception is orders of magnitude faster than cognition, despite solving mathematically similar

problems. The other wonders how perception could be tractable in absolute terms, which is to say,

how perceptual processing can happen on roughly human timescales. From what we’ve seen so far, it

might seem that the EET is best suited as an explanation of the relative tractability of perception. This

is a modest version of the thesis. On this interpretation, the EET is silent on the question of how

cognition and perception are accomplished with merely human levels of compute.16 Instead it merely

aims to explain the speed of perception relative to cognition (the di�erence between, say, minutes for

thought and milliseconds for seeing).

Some proponents of EET likely understand the thesis in its modest version. This is just as well,

as the immodest version of the thesis leads to some strange consequences. For example, if the price of

absolute tractability is forgoing access to information stores on the scale of those that exist in cognition,

then it follows that cognition itself must be divided into parts, none of which exceeds that critical

threshold, or that cognition must be computationally intractable. Interestingly, both of these

consequences have been endorsed by theorists working in this tradition. Massive modularists, such as

Tooby and Cosmides (1992), Pinker (1997), and Carruthers (2007), give up on the idea of a uni�ed

central cognition, citing tractability arguments, among others.17 These theorists prefer a view of

cognition on which the mind is really a bundle of independent cognitive entities, each working on

certain ecologically salient problems. Opting for the other horn, Fodor himself held that the integrated

17 Carruthers (2007, p. 44-52) o�ers the clearest defense of massive modularity on tractability grounds. See also Tooby &
Cosmides (1992, p. 106).

16 Rather than the industrial levels of compute required by today's AI (see Section II) or the astronomical levels of compute
suggested by theoretical analyses (more on this in a moment).
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nature of central cognitive processing is undeniable and argued on these grounds that a computational

theory of mind could never include central cognition!1819

How should we understand the EET then? As an explanation of relative or of absolute

tractability? For the purposes of this paper, we won’t ask the proponent of the EET to commit one

way or the other. The argument developed below will show that information encapsulation is not the

right place to look for an explanation of either kind of tractability.

Next, there is the question of what kind of explanation the EET is meant to o�er. There are a

few options here. One could hold that encapsulation is su�cient for tractability: that is, that

perception must be tractable if it is encapsulated. Or that encapsulation is necessary for tractability:

that perception could not be tractable unless encapsulated. Finally, a weaker version of the EET might

grant that encapsulation is neither su�cient nor necessary for tractability, but maintain that

encapsulation is nevertheless a di�erence-maker: that is, that perception would not be tractable were it

not encapsulated. (This is di�erent from either necessity or su�ciency. For example, striking a match is

not su�cient for lighting a match, since there must be oxygen and the room. Nor is it necessary, since a

match can be lit by other means. It is, nevertheless, a di�erence maker – holding �xed all else about the

system, the match would not have been lit but for the striking.) If encapsulation explains tractability,

then absent systematic overdetermination, it must at least be a di�erence maker. Here again, I won’t try

to pin down exactly which of these versions of the EET proponents have in mind. Instead, I'll argue

against all three versions of the thesis. That is, I will argue that encapsulation is neither su�cient nor

necessary for tractability, and that there is no positive reason to believe it is even a di�erence-maker.

Finally, a few words about the empirical assumptions that the EET requires in order to get o�

the ground, which I’ll be granting for the sake of argument. These assumptions fall into two categories.

19 Examples like these illustrate that some theorists clearly have an immodest version of the EET in mind, but not all
versions of the EET lead to this dilemma. If the EET is meant to explain only the relative tractability of perception, then no
such conclusions about cognition follow.

18 Fodor writes, “Indeed, I am inclined to think that, sooner or later, we will all have to give up on the Turing story [of
computation] as a general account of how the mind works...” (p. 47). Why? Because “…the computational theory of mental
processes doesn’t work for abductive inferences” (p. 41). This means that “... a cognitive science that provides some insight
into the part of the mind that isn’t modular may well have to be di�erent, root and branch, from the kind of syntactical
account that Turing’s insights inspired.” (2000, p. 99)

29



One set of empirical assumptions has to do with the distribution of information between perception

and cognition. If the encapsulation of perception from cognition is meant to explain the tractability of

perception in any of the senses discussed above, then such an explanation turns on contingent facts

about just how much information is stored in each. If there is too much information stored in

perception, for example, then perception will be intractable regardless of whether it is encapsulated

(and so encapsulation cannot be su�cient for tractability). Conversely, if there is too little information

in cognition, then eschewing access to such information will be neither necessary for tractability, nor a

di�erence maker. The interest of the thesis therefore depends on facts about the relative amount of

information in perception and cognition.

In what follows, I’ll grant the encapsulation theorist the empirical facts that they seem to

believe: that perception’s proprietary store of information is small enough to be tractably searched in

the time it takes for perceptual processing to unfold, and that cognition’s store is meaningfully larger,

such that searching cognition would represent a signi�cant multiplier on the work involved in

searching perception alone. (My main interest in this paper will not be in challenging any of these facts,

but rather in taking issue with the underlying view of tractability that makes such facts relevant.)

The other set of empirical assumptions required to warrant interest in the EET has to do with

the connection between information access and information search. Encapsulation bars information

access, and the EET holds that foregoing such access explains tractability by keeping computational

costs low. Strictly speaking however, information access costs hardly anything at all – all the relevant

costs are the costs of search. To put the idea bluntly: �nding a needle in a haystack can be challenging,

but if someone gives you a needle from a haystack, receiving it is not di�cult. Why couldn’t cognition

simply send the relevant information for perceptual processing to prime perception in the next

moment, obviating the need for an expensive search on perception’s part? Cognition could, for

example, send a relevant color memory (Hansen et al. 2006, Machperson 2012) or expectation about

some other low-level feature (Kok et al. 2012). While this would be a violation of encapsulation, it

wouldn't require anything like a perception-initiated, real-time, or full-scale search through cognition,

and wouldn’t require anything that any party to the debate currently believes to be intractable (no one
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denies that people can recall the approximate colors of objects from long-term memory or notice a

pattern in the features of serially presented stimuli!). In such a case, the computational costs of a

violation of encapsulation would be near-zero.

To connect the negligible costs of access to the more considerable costs of search requires some

argument. Maybe evolution opted to prevent all cognitive in�uences, including ones that are obviously

cheap, in order to avoid the costly ones? Such a scenario would be plausible if we assumed that

evolution faced the choice between either barring all cognitive in�uences or barring none, but this idea

rests on a strangely dichotomous view of the computational options available. After all, there are many

ways in which access could be consistent with non-exhaustive search (some of which are discussed in

Section VII) and no a priori reason to think such intermediate solutions are inaccessible to evolution.

Be that as it may, we will assume that there is some argument of this type available to the proponent of

the EET, as we can make sense of the view only if information access can be wedded to the

computational costs of search.

We now have a sense of the breadth of versions of the EET and the empirical assumptions on

which the plausibility of the EET depends. In the next section, we’ll analyze the concept of

computational tractability at work in the EET.

IV. Tractability as an Empirical Bound

We can begin with some points of agreement between all parties. If the mind is computational,

then it has some basic operations for manipulating information.20 These operations could be

manipulations of explicit symbols according to rules, as in traditional computers, or the

transformation of large vectors of inputs by matrix multiplication, as in contemporary neural

networks, or something else besides. Because these operations are implemented in a physical substrate,

each instance of an operation takes up some �xed, �nite amount of time. It follows that doing too

many such operations will take too long; i.e. will render a computation intractable. This line of

reasoning gives us a simple account of computational tractability as it applies to the mind, which is

20 See Section I, p. 5 and footnote 6, for discussion of the computational theory of mind.
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common to proponents of EET and their detractors.

Tractability: A computational procedure is tractable when it can be completed in fewer than

K steps.

A few clari�cations are in order. A computational procedure is a �nite set of instructions and basic

computational operations which de�ne a series of applications of those operations for each instance of

a given class of inputs, delivering an output. Crucially, computational procedures must function

without recourse to anything but their inputs, instructions, and basic operations (see Turing 1936). A

computational procedure may be branching in the sense that it doesn’t have to execute the same series

of operations every time. It can treat di�erent inputs di�erently (say, running a distinct series of

operations for odd numbered inputs as for even), and could even be stochastic, making random

choices at prede�ned points in its execution.

Computational procedures are the only way we know of to solve computational problems. A

computational problem is a set of inputs, a set of outputs, a set of ordinal or metric structures over

those outputs, and a mapping from inputs to a given structure over outputs. The metric or ordinal

structure over the set of outputs re�ects the fact that answers to computational problems are not

always right or wrong, but are often better or worse than one another. Better procedures are those that

deliver better performance on a problem.

A computational problem can also be tractable or intractable. A computational problem is

intractable, relative to a performance criterion, when no procedure can tractably solve that problem to

that performance speci�cation. This bit of relativism is necessary for a meaningful notion of

tractability, as there are few limits on how quickly an answer can be computed in the absence of

non-trivial criteria for how good an answer it has to be (see Section II). Criteria may include how close

one is to the right answer, how often one gives the right answer, the class or proportion of problem

instances for which one gives the right answer, or any combination of these.21 The performance

21 An acceptable criterion for performance for visual estimation of distance for example, could be that the visual system
delivers an answer within 20% of the true value, 90% of the time, when presented with an object in good light.
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criterion relevant for our purposes is that of human-level performance. To explain how, say, visual

inference is tractable, is to explain how it could be computed to human-level performance in fewer

than K steps.

Finally, we might wonder, what is K? For our purposes we can imagine that, for a particular

problem and performance criterion, K is some �xed number, determined by how long it takes a human

being to solve that problem to that performance criterion. For a given problem and performance

criterion, there are many things that might a�ect how big K is. One is the speed of the relevant basic

operations in the human brain. Faster operations permit a higher K. Another is parallelization. Some

problems have parts that can be solved by parallel trains of operations, increasing the number of

operations that can be packed into a unit time. The speed of basic operations in the brain and the

extent to which parallelization is employed are both questions outside the scope of this paper. In light

of substantial uncertainty about these values we should err on the side of liberality when setting K, so

as not to prematurely eliminate hypotheses about the mind that we can’t be sure are intractable. In

other words, we should allow that K for many human perceptual processes may be quite large. It will

not, however, be astronomically large.

What counts as astronomically large? We can gain something of a foothold on this concept by

starting with the capacities of today’s supercomputers. Today’s fastest supercomputers perform on the

order of 10^17 operations per second. To do this, they run thousands of processors, occupy whole

complexes, and consume vast amounts of power. For the purposes of this paper, we’ll say that anything

that would take one billion supercomputers one billion seconds (~115 days) to compute (that is,

>10^30 operations) is ‘astronomical.’ Trivial as it sounds, we will see that the requirement that

perceptual processing not require astronomically many steps will turn out to be a constraint with some

teeth.

Taken together, an explanation of the tractability of perception is an explanation of how

perception is accomplished without astronomical costs. Over the next two sections, however, we’ll see

that plausible assumptions about the costs of perceptual inference actually do entail astronomical

costs. To explain the tractability of perception then, a theory must explain how these assumptions can
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be denied and these costs avoided. This will give us a positive framework for thinking about

tractability. Finally, we’ll see in Section (VII) that information encapsulation is ill-equipped to

contribute meaningfully to an explanation of tractability in light of all this.

V. Inference & Scaling Behavior

A theory of perceptual tractability must explain how perception is accomplished, relative to

human-level performance, by some computational procedure that takes less than astronomically many

steps. If we call the number of steps needed to solve a problem to the relevant performance criterion M,

then a perceptual inference is tractable when M < K. But what properties of a problem contribute the

most to M for the computational procedures that solve it? And, in particular, what properties put us at

risk of astronomically large M?

Theoretical computer science can be a source of insight here. One branch of theoretical

computer science, Computational Complexity Theory (CCT), reasons about computational costs

through the lens of how M grows, or ‘scales,’ with di�erent properties of a computational problem,

including most famously the number of inputs to a problem, but with theoretical extensions to

include considerations of performance criteria and distributions over inputs. Co-opting some of the

core concepts of this �eld will help us better understand our own notion of tractability. (For more

detailed introductions to CCT then I can provide here, see Sipser 2012, Arora and Barak 2007, or

Goldreich 2008.)

CCT and Scaling Behavior

CCT taxonomizes computational problems according to the functional form of the ‘scaling

behavior’ of a problem on the number of inputs. The scaling behavior of a computational procedure is

the relationship between the number of inputs and the number of steps the procedure goes through

for those inputs, while the scaling behavior of a problem is the behavior of the most e�cient procedure

for solving it. To get a feel for how scaling behaviors di�er between problems, imagine attempting to

plan a wedding given a guest list. If you want to know whether you’ll need chairs or not, all you have to
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do is check whether the list is non-empty. This is a constant time operation; and this takes equally

many steps no matter how long the list is. If you want to know how many chairs you’ll need, by

contrast, then you need to count the number of names on the list. This is a linear time operation; it

requires a number of steps that is a linear function of the length of the list. Finally, if you want to know

what seating arrangement will maximize the well-being of your guests, allowing old friends to catch up,

kindling new romances, and avoiding explosive ti�s, you’ll need to consider every way your seating

chart could be arranged. This is an exponential time operation. Such operations tend to be sticking

points in our lives, as in the lives of computers. No one complains about having to count the number

of guests on a list, but planning the seating can be a nightmare.

CCT treats this di�erence between exponential and sub-exponential scaling as a di�erence in

kind rather than degree. It does this because, for moderately sized inputs and beyond, the contrast

between exponential and sub-exponential scaling often separates operations that can be feasibly

computed, even at signi�cant cost, from those that cannot. For example, in the wedding case above, if

your guest list contains 90 people, then checking whether you’ll need seating takes 1 step, while

counting how many chairs takes 90. If you can set up at most 10 tables of variable size for your guests,

then �nding the optimal seating arrangement requires on the order of 10^90 steps, at least one for each

of the unique possibilities that must be considered. 10^90 is a big number; it’s more than the number

of atoms in the known universe. For the purposes of practical computation, it might as well be in�nite.

That’s why CCT treats this di�erence in degree as an e�ective di�erence in kind.

A few clari�cations. First o�, not all inputs to a computational problem contribute equally to

the cost of solving it.22 We’ll discuss this at length in the case of perceptual inference in the next section.

Second, CCT makes strong assumptions about the performance criteria relative to which costs are

assessed – most famously requiring guaranteed performance on all (and therefore the most di�cult)

22 For example, the computational costs of determining whether a formula in propositional logic is satis�able is exponential
in the number of literals that appear in the formula, but not exponential in the length of the formula. More detail on this
area of research, known as Parameterized Computational Complexity Theory, can be found in Downey & Fellows (2013)
and Flum & Grohe (2006). See Kwisthout (2011; 2018) for an overview of key results related to cognitive science.
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problem instances — and this limits its relevance to our project.23 Relatedly, CCT doesn’t model

aspects of problem structure that might make certain problem instances easier or harder. Where

particular classes of problem instances have additional structure, that structure can sometimes be

exploited to make a problem in that class easier than the complexity of its super-class would suggest.24

When it comes to the project of understanding computational complexity as it applies to theories of

the mind, we’ll take what we can use from CCT and leave what we can’t.

The key thing we will keep is CCT’s focus on scaling behavior. This simple idea is both deep in

what it reveals about the nature of computational problems and crucial for the task at hand. To be �t

for our purposes, however, the concept of scaling behavior drawn from CCT will have to be both

broadened (to include more diverse performance criteria) and re�ned (so as to be applied to classes of

instances that have exploitable structure). Our CCT-inspired examination of scaling behavior will give

us a place to start in examining what properties of perceptual inference problems entail which

computational costs.

The argument will proceed as follows. We’ll begin by establishing some general facts about the

way that the hypothesis space of an inference problem grows as a function of the dimensionality of that

problem. What we mean by these words will be made clear in due course. We’ll �nd that the hypothesis

space grows exponentially as a function of dimensionality. Under some simple starting assumptions,

this exponential growth translates into exponential growth in the costs of computing inference. We’ll

then see that these assumptions can be substantially weakened, leaving the main result intact. In the

following section, I’ll argue that this exponential growth in the costs of perceptual inference, combined

with the actual dimensionality of real life perceptual inference problems, suggest astronomical costs for

perceptual inference. These costs dominate anything else in perceptual processing. One consequence of

24 Backtracking Satis�ability (or ‘SAT’) solvers (e.g. Davis & Putnam 1960, Davis et al 1962) are a classic example of a
strategy that exploits local problem structure to �nd a solution more quickly. Since a minority of SAT cases exhibit global
structure that frustrates such strategies, SAT exhibits a disconnect between theoretical intractability and computational
procedures that are tractable for most purposes.

23 Other branches of CCT look at average performance assuming simple distributions over inputs. This too is unlikely to be
the kind of performance criterion most relevant to a computational theory of the mind, since ecologically realistic
distributions over inputs are often not simple and generally lack closed form expression.
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this is that explaining the tractability of perception requires explaining how some of these assumptions

can be credibly rejected so as to avoid astronomical costs. Another is that avoiding the costs of

information access (the focus of the Haystack Idea) is unlikely to make an important contribution to

the tractability of perception.

Scaling Behavior of Inference

The �rst concepts we’ll need are those of a hypothesis space and the dimensions that de�ne it.

Solving an inference problem requires �nding one or more good hypotheses about how the world

might be from the set of all the ways the world could be, at least by the lights of that inference problem.

In the wedding planning example, ‘all the ways the world could be’ includes all the ways that people at

your wedding could be seated. (The problem is ‘blind’ to many other ways the world could be, such as

how the astronauts in the International Space Station might be seated.) Hypotheses, or candidate

solutions to the inference problem, di�er from one another in their assignments of values to variables,

such as people to tables. These variables can be thought of as the ‘dimensions’ of a space (the

‘hypothesis space’), the values as coordinates along those dimensions, and hypotheses as unique points

in the space.25 In the wedding planning example, each attendee is a ‘dimension’ which must be assigned

a value, in other words, a table. In the case of visual, perceptual inference, which we’ll get to shortly, the

hypothesis space is given by all the ways the objects in a scene could be – their colors, shapes, locations,

etc.

One thing to notice is that the dimensionality of an inference problem (which dictates what

hypotheses can be represented) comes apart from the information we bring to bear in solving that

25 Here I am eliding the question of whether to think of the hypothesis space as a semantic feature of the problem (ways the
world could be) or as a syntactic feature of the representation of the problem (ways the world could be from the perspective
of a procedure). In the absence of meaningless or synonymous expressions and assuming that all relevant hypotheses are
expressible, there will be a 1-to-1 correspondence between hypotheses in the syntactic sense and in the semantic sense.
Assuming that a problem can be fully represented then, deviation from this 1-to-1 correspondence comes when there are
more syntactic hypotheses than there are genuine possibilities. Since a computational procedure can only operate over
syntactic hypotheses, such deviations create additional costs. On the assumption that all semantic di�erences can be
represented then, we can treat the semantic dimensionality of a problem as a lower bound on the cost-driving, syntactic
dimensionality of a computational procedure for solving it.
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problem (what is known about those hypotheses). Adding a new dimension – say, kind of chair –

allows the system to formulate new hypotheses (should I seat Veronica and Ezra in bean bags?), while

information changes the assessment of quality of various hypotheses (I might know that Matthias

would not like being sat at the kids’ table). The distinction here is not idle. While being able to

represent a dimension o�ers a natural way to represent information about that dimension, a system

can also represent a dimension without having any information about it.26 Similarly, a system can make

use of information that is encoded in dimensions it does not represent. An example of the �rst would

be if the visual system could represent colors and object categories, but was encapsulated from relevant

information in cognition about the colors of known objects. In this case, vision possesses the

dimension of color, but lacks information about it. An example of the second would be if the visual

system could represent color and face identities, but not party a�liation. Cognition, for its part, might

know that a particular person is a republican and that republicans are likely to wear red ties. We can

imagine that cognition sends a visual expectation down to vision about the color of a tie in response to

a perceptual output recognizing the face. In this case, vision would possess information about the

dependency between identity and tie color, while lacking the dimension of party a�liation that

introduces the connection. This distinction, between information and dimensions, will be critical in

what’s to come since the costs of inference are sensitive to the two in very di�erent ways.

How exactly are the costs of inference related to dimensionality? To ease into this, think �rst

about how the set of hypotheses grows as new dimensions are added to the space. When we add a new

dimension, each possible value of the new dimension combines with every previously complete

hypothesis to deliver a new set of unique hypotheses. So, for example, if we add ‘kind of chair’ to our

wedding planning problem, then where we previously had a single complete hypothesis (a total

assignment of people to tables), we now have a set of hypotheses; every possible combination of

assignments of people to types of chairs, consistent with a table assignment. Just like adding a new

dimension to a real coordinate space, this produces exponential growth in the set of hypotheses.

26 If some information is necessary for concept possession, then read this as ‘without any further information than is
necessary for representing the dimension’.
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So our set of hypotheses grows exponentially as the dimensions of the problem are increased.

But how is this tied to the actual costs of performing inference? Some simple assumptions will deliver

the result that exponential growth in the hypothesis space produces exponential growth in the costs of

inference.27 I’ll �rst present these assumptions and then look at ways they might be weakened.

First, consider performance criteria. We saw that computing inference requires �nding ‘good’

hypotheses from within an exponentially growing hypothesis space, where the goodness of a hypothesis

consists in its probability, plausibility, or explanatory import. For the moment, take �nding a ‘good’

hypothesis to mean �nding the ‘best’ hypothesis. Next, assume that it costs at least one computational

step to evaluate a hypothesis and only one hypothesis can be evaluated at a time.28 Finally, assume that

nothing is known beforehand about the relative or absolute distribution of good hypotheses

throughout the space. That is, the only way to �nd out whether a hypothesis is any good is to evaluate

its plausibility relative to a prior and the data.

When these assumptions are met, the computational costs of doing inference grow linearly

with the number of hypotheses and therefore exponentially with the number of dimensions de�ning

the hypothesis space. This is because hypotheses must be evaluated in order to determine their

performance, and must be evaluated in some order that is independent of the performance of the

hypotheses (since having access to an order that privileges better hypotheses would violate the

assumption that nothing about hypothesis performance is known beforehand). This entails that the

number of hypotheses that must be evaluated grows linearly in expectation with the number of

hypotheses in the space, and therefore exponentially in the dimensionality. Note that this holds

28 We can actually get by with a much weaker assumption, i.e. the assumption that there are no exponential speed-ups in the
number of hypotheses that can be evaluated at a time (either as a function of the amount of time spent reasoning or the
number of dimensions in the hypothesis space). That is, we can get by with the assumption that there can be no �nite
equivalent of super-tasking: evaluating one hypothesis in c steps, the next in ½c steps, the next in ¼c steps, and so on. I use
the stronger assumption that evaluating a hypothesis costs one computational step because it will considerably simplify the
presentation of the argument in the following section.

27 The thought here is that the costs of inference are an exponential function of the dimensionality of the problem (I’ll show
later that this, combined with the (possibly �xed) dimensionality of perceptual inference problems is su�cient to put the
costs of inference in astronomical territory). The talk of exponential ‘growth’ in costs is merely meant to bring out this
functional relationship. It will not be important to my argument whether the dimensions of perceptual inference can
continue to be increased (in fact, they may be architecturally barred from doing so for just this reason; See Section VIII).
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whether we are sampling randomly (with or without replacement29) or evaluating hypotheses in a

predetermined order (which, since it cannot be relied on to privilege the best hypotheses in the general

case, might as well be a random order). Finally, since the number of hypotheses that must be evaluated

in expectation grows exponentially as a function of the dimensionality, and since the costs of

evaluating a hypothesis are constant, the costs of evaluation grow exponentially as well.

This line of reasoning establishes exponential growth under these assumptions, but some may

�nd the assumptions troubling. The performance criterion is a particular sticking point. While many

have argued that human perception is optimal, in the sense of �nding the best solutions to its inference

problems (Ernst & Banks 2002, Weiss et al. 2002, see Ma et al. 2010 for a review), others have argued

against this perspective (e.g. Rahnev & Dennison 2018). We can, however, weaken the performance

criterion in reasonable ways while maintaining the main result. Imagine, for example, that instead of

�nding the best hypothesis for a given problem, human perception �nds hypotheses that are merely

‘good enough’, in the sense that they are close enough in value to the best hypothesis along each of the

dimensions of the problem. In this case, we might count as a satisfactory answer any hypothesis within

3% of the value of the best hypothesis along each of the relevant dimensions. This has the e�ect of

turning a solution set from a point to a contiguous region in the hypothesis space. Such relaxations

would certainly make these problems easier to solve, but they do not resolve the more fundamental

issue of exponential scaling. To see this, imagine solving an inference problem to this ‘good enough’

standard of performance. Even in this case, the proportion of hypotheses meeting this criterion shrinks

exponentially as the dimensionality of the space increases. For one dimension, 3% of samples will meet

this criterion. But for 3 dimensions, that proportion is 0.0027%, for 6 it’s 7.3 x 10^-8 %, and so on.30

Here, as above, the proportion of good hypotheses becomes vanishingly small, and reasonable

assumptions about the costs of evaluation will entail astronomical costs for �nding those hypotheses.

(This example also illustrates how exponential scaling generalizes to continuous hypothesis spaces,

30 That proportion is given by the equation (3/100)^n.

29 Assuming, for simplicity, a uniform distribution over hypotheses, the expected number of hypotheses sampled before
�nding the best corresponds to the Geometric distribution with exponentially decreasing probability of success as
dimensions are added. Sampling without replacement yields another distribution that also grows linearly in expectation as
the number of non-best hypotheses grows, and therefore exponentially in dimensionality.
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where in the continuous case, as in the discrete case, the proportion of the measures of the solution set

and the problem set shrinks exponentially.31)32

There are, of course, many ways to weaken the performance criteria, and we’ve only looked at

one. It may be that some of these ways avoid exponential growth in the costs of inference while still

delivering human-level performance. This is, however, not where I’d put my money. Human

performance on perceptual inference tasks is excellent (see Section II). It seems for this reason that

weakening the performance criteria to such an extent that hypotheses that meet those criteria will be

easy to come by, even in astronomically large hypothesis spaces, is a non-starter. Instead, we’ll have to

ask which of our other assumptions can be given up, in particular the assumption that nothing is

known in advance about the distribution of promising hypotheses. This will be a focus of a later

section (Section VII). For the time being, we need to show that this theoretical result of exponential

scaling actually is su�cient to push the costs of perceptual inference into astronomical territory when

certain empirical facts about the dimensionality of perceptual inference are considered.

VI. Dimensionality of Perceptual Inference

I’ve argued that, under reasonable assumptions, the costs of inference scale exponentially in the

dimensionality of the problem. But what does all this mean for the tractability of real world perceptual

inference? To know what conclusions we should draw requires developing a rough idea of the

dimensionality of perceptual inference and the proportion of perceptual hypotheses that satisfy

human-like performance. I’ll argue that conservative assumptions about dimensionality, and liberal

assumptions about the proportion of hypotheses that satisfy human-like performance, combined with

32 Note that the astronomical costs of inference hold even if, as is believed, the brain is massively parallel (see Section III, p.
30). Since parallelization can deliver at best a factor of N speed-up, where N is the number of parallel processes, the
exponential increase of costs is maintained regardless. Unless the number of parallel processes is itself astronomical (much
greater than the estimated 10^7 neurons in the brain), parallelization won’t make a di�erence in the analyzes to come.

31 The challenges of exponential scaling are also robust to reparameterization. While in either discrete or continuous cases
one could always map the hypotheses from N dimensions onto a single dimension, such a trick would change neither the
relative cardinalities of the solution set to the problem set in the discrete case nor the proportion of the measures in the
continuous case. (In general, a syntactic representation of the problem that di�ers from the problem’s intrinsic
dimensionality can make the solving the problem more di�cult, but it cannot reliably make it easier. See footnote 22.)
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our assumptions so far, entail astronomical costs for perceptual inference. I’ll make this case by

presenting a toy visual inference problem, involving just a few of the many dimensions that vision

represents.

A Toy Inference Problem

Consider a scenario in which I open my eyes to see a simple scene of static objects. Each object

has a color, a lighting condition, a location in three dimensions, and a shape. We can set some numbers

to these possibilities. Perhaps there are a million (10^6) colors we can see,33 another million (10^6)

ways the lighting could be (Tokunaga and Logvinenko 2010), perhaps a billion possible locations

(10^9), and another billion (10^9) possible shapes.

These are conservative �gures. Stipulating a billion possible locations amounts to assuming

that there are a mere 1000 just noticeable di�erences in location across each of 3 dimensions – a

modest estimate of human spatial acuity.34 In the case of shapes, a mere billion discriminable

possibilities across all the con�gurations of shapes and sizes perceptible to human beings is a gross

underestimate. Even with such conservative numbers, however, the di�erent combinations deliver

10^30 ways an object could be. If there are 3 objects in a scene, the number of possible scenes is 10^90.

Here again, this number is greater than the number of atoms in the known universe. For practical

purposes, it may as well be in�nite.

We saw earlier that loosening up the performance criteria within reason does not change the

exponential decrease in the proportion of viable solutions. But where do these considerations get us in

the case of perceptual inference? We already assumed that the divisions were coarse-grained (with just

34 Just Noticeable Di�erences (JNDs) are the smallest di�erences that provoke above chance discrimination. Here I’m
assuming for the sake of simplicity that there are an equal number of JNDs across each dimension. Distortions in visual
space may mean that this is not quite right (Green & Rabin 2019). Note that the connection between perceptual
hypotheses (distinct internal representations) and discrimination is not direct – distinct representational states are the
competence to discrimination’s performance. Discrimination is accomplished by mapping equivalence classes of stimuli to
distinct representational states. Distinct representational states can, however, exist without showing up in discrimination,
say if insu�cient light, damage to the retina, or other peripheral constraints impair performance. Discrimination then
places a lower bound on the number of distinct representational states; the value relevant for inference.

33 Estimates range from 1-10 million.
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1,000 JNDs in location along each spatial dimension). But we can go further. Let’s say that any

hypothesis is acceptable so long as it falls within a range of 3% of the best hypothesis, along each

dimension in the hypothesis space. Assuming that color, lighting color, location, and shape each

involve three dimensions, the proportion of hypotheses satisfying this condition for a scene with three

objects would be on the order of 1 in 10^54 – still well within astronomical territory.35

In setting this up I have said nothing of numerous other dimensions represented in vision,

including low-level dimensions such as edges, as well as many high-level contents, such as motion

(Weiss et al. 2002),36 object identity (Quilty-Dunn 2019), causality and animacy (Scholl & Tremoulet

2000), or hierarchical part structure (Green 2017). I have also neglected dimensions from other

modalities which participate in inference in cross-modal perception (Green 2021) and cue integration

(e.g. Ernst and Banks 2002). Each additional dimension should be expected to make an exponential

contribution to the problem size.

Individuating Inferences

One thing we haven’t discussed yet is how to individuate inference problems. As it turns out,

this question matters a great deal. This is because inference problems are much more than the sum of

their parts. So far we’ve been assuming that if perception represents the dimensions of color, lighting

condition, shape, and location, then it must recover these in a single inference problem. But recovering

them in a set of smaller inference problems is exponentially less costly.37 Imagine, for example, that

perception were to solve two inference problems, one to recover the color and lighting condition of an

object and another to recover its shape and location. Using the same �gures we used above, but

recovering the surface color and lighting color for three objects and, separately, three object’s shapes

and locations, would deliver a hypothesis space of approximately 10^51 hypotheses; about a million

37 Based on our assumptions so far.

36 Which is not just successive location (see the waterfall illusion).

35 Here I am calculating (3/100)^36 – or 12 dimensions over 3 objects. This assumes that shape representations are
parameterized along 3 natural, continuous dimensions. This is almost certainly not the case. The actual dimensionality will
be higher, and the resulting proportion of acceptable hypotheses will be smaller. We are considering ‘astronomical’ anything
> 10^30, see Section IV.
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trillion times fewer than the 10^90 that results if we jointly solve for all of these dimensions.38 These

savings only get more dramatic as the overall dimensionality grows.

One might wonder whether perception could limit the costs of inference by adopting a divide

and conquer strategy of this kind, in e�ect holding that perception is composed of many distinct

modules responsible for each of the di�erent sets of properties discussed above. This broad outlook on

vision was made famous by Marr’s foundational work on vision (Marr 1982) and has many

contemporary adherents.

The problem with such an architecture is what is lost when larger inference problems are

broken up into smaller problems in this way. In such cases, the sum of inference problems is no longer

sensitive to the dependencies between the dimensions housed in separate problems (more on this in a

moment). The loss of sensitivity to these dependencies matters because human-level performance

requires this sensitivity (otherwise, color, shape, and location cannot be accurately recovered), and,

unsurprisingly, human vision empirically exhibits it (as will become clear shortly). The rest of this

subsection will spell out this reasoning more carefully.

Dependencies, as may be clear from the above, are the relationships between dimensions such

that information about one dimension bears on the probable values of another. Sensitivity to

dependencies is necessary if inference is to arrive at an internally consistent percept. For example, if one

large object stands between another object and a scene’s source of illumination, then the second object

is likely to be cast in the �rst’s shadow. This in turn in�uences how the intensity (and spectral pro�le)

of the light re�ected o� the second object is interpreted, as object color or lighting condition.

Conversely, if the light bouncing o� an object of unknown location is re�ecting light that is darker

than expected, this could be evidence that the object is in shadow, providing information about its

location. Such dependencies between dimensions (in this case location and lighting condition) are

invisible when inference problems are broken up into their component parts. In such cases,

assignments of probable values of color must be made independently of assignments about location,

leading to inconsistency.

38 For color and lighting color, that’s ((100)^6)^3 = (10^11)^3 = 10^33. For shape and location, ((1000)^6)^3 = (10^17)^3
= 10^51. 10^33 + 10^51 ≈ 10^51.
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If such inconsistency is kept to modest levels, it might be a reasonable price to pay for tractable

inference, but it does not seem to be the strategy that human perception takes. This is because

perception is, in fact, sensitive to a great many dependencies between perceptible dimensions,

including dependencies between all of the dimensions used in the toy example above. Sensitivity to

these particular dependencies can be seen through a series of established psychophysical results. (Such

results will naturally not show that perception is sensitive to the dependencies between all of the

dimensions it represents, but will show that a divide and conquer strategy is insu�cient for tractability,

as the dependencies which are represented are su�cient to establish astronomical costs given our other

assumptions.)

Start with color constancy – Objects in the world are seen as having a stable color, despite

changes in lighting condition between indoors and out, across changes in weather and time of day.

This fact is quite surprising when one considers just how much the light hitting your eye di�ers under

these conditions. A lump of coal in bright sunlight re�ects about as much light as white chalk indoors,

but the chalk appears bright white and the coal jet black. This phenomenon, known as color constancy,

is accomplished by jointly inferring color and lighting condition so as to �nd a consistent assignment of

values to those dimensions (Tokunaga & Logvinenko 2010). If a lot of light is hitting the retina, for

example, this could be because the object re�ects most light (as in the case of chalk) or because it is

intensely lit (as in the case of coal in bright outdoor light). By doing joint inference over these

dimensions, perception can ensure that it is not double counting the properties of the proximal

stimulus – which might result in seeing the coal outside as bright white. Color constancy then, is

perceptual sensitivity to the dependency between color and lighting condition.39

Just as with color and lighting condition, all four of the dimensions we’ve discussed so far are

jointly confounded in the retinal stimulus and so conditionally dependent on one another. For

example, di�erent shapes in di�erent lighting conditions give rise to di�erent patterns of coloration

across an object. If information about probable lighting sources is present, either from a prior or from

further cues in a scene, then the pattern of coloration can be used to infer the object’s shape. In a

39 Really, the conditional dependency between color and lighting condition, conditional on a given retinal input.

45



phenomenon known as ‘Shape from Shading,’ the visual system does just this. A classic study showed

participants 2D shaded circles, either darker on the bottom and lighter on top or vice versa.

Participants saw the light-on-top circles as convex 3D reliefs while seeing the dark-on-top circles as

concave recesses, demonstrating both a visual prior that light comes from above and a sensitivity to the

dependency between lighting condition and shape (Ramachandran 1988, see Figure 1 for illustration).

Sensitivity to the dependencies between color, lighting condition, and shape extends to the location

dimension and to the properties of other objects as well. When multiple shaded objects provide further

cues to lighting direction, participants can be induced to assign di�erent locations to an unobserved

lighting source (Morgenstern et al. 2011). Similarly, scenes with cues suggestive of multiple lighting

sources induce global percepts of objects with shape properties consistent with those lighting sources

(Wilder et al. 2019).

Collectively, these e�ects illustrate perceptual sensitivity to the dependencies that exist between

color, lighting condition, shape, and location. Insofar as color and lighting condition are jointly

dependent on one another (by color constancy), lighting condition is dependent on shape and location

(by light source, shadow, and mutual illumination), and the locations of objects and light sources are

dependent on the shape and color of objects (by the �exibility of the illuminant prior), there cannot be

any consistent independent recovery of these attributes. Rather, they must be recovered jointly.

A vivid illustration of this joint inference can be found in the bistable chromatic Mach card

(Bloj et al. 1999, Harding et al. 2012). In this e�ect, a folded card with two colored sides is shown to

participants. One side is painted white and the other magenta. The card is folded in a concave fashion,

with the edges of the paper protruding, and presented to the viewer head-on. Viewed at this angle, the

card can be seen as either concave or convex. Because the card is actually concave, the two sides

mutually illuminate, with light from the magenta side casting a pink glow on the white side. When

participants see the card as concave, all of this is perceived veridically – the card looks concave, the sides

white and magenta, and the white side cast in pinkish light. When participants see the card as convex

however, one side is perceived as magenta and the other side as light pink (i.e. having a light pink

surface color). In this case, the pinkish coloring that vision had originally attributed to mutual
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illumination between two facing sides is now seen as the much darker surface color of a second painted

side. The bistability of the chromatic Mach card vividly illustrates human visual sensitivity to the

dependencies between color, lighting condition, shape, and location (mediated by mutual

illumination).

Figure 1: Typical shape from shading stimuli – Shape (either convex or concave) is assigned to multiple

objects under the assumption of a single illuminant governing them all. This assumption is defeasible,

as discussed in (Morgenstern et al. 2011, Wilder et al. 2019).

Sensitivity to these dependencies shows that human perception cannot be using a simple divide

and conquer strategy to head o� exponential costs. But what about a modular strategy followed by a
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recombination stage? There are lots of ways that such a strategy could work, but they all fall into two

broad categories – independent computation of dimensions followed by principled combination of

those values into a coherent hypothesis, and independent computation followed by heuristic

combination. We’ll look at each of these in turn.

Take the �rst case, of independent recovery followed by principled recombination. When this

strategy is deployed, the problem is �rst broken up into small subsets of dimensions which are jointly

inferred, with exponential savings for breaking up the larger inference problem. The outputs of these

sub-inferences are then recombined into a full hypothesis in some principled fashion, such that the end

result is the same as if inference had originally been computed over the full set of dimensions.

Illustrative examples of this approach come from the literature on ‘Bayesian cue combination.’ In a

typical Bayesian cue combination study a model is proposed on which independent measurements of

some perceptual dimension are combined in a way that is sensitive to the uncertainties in each

measurement. These independent measurements are then combined analytically, often by multiplying

gaussians. In one famous study, due to Ernst and Banks (2002), subjects were asked to assess the height

of an object presented to them both visually and haptically. This was accomplished by allowing

subjects to simultaneously touch an object with their hands while viewing it through a window of

varying opacity, blurring the image of the object beyond. The authors showed that subjects’

judgements of size re�ected information from both vision and touch. Intriguingly, subjects’ �nal

judgements were also sensitive to the uncertainty in each of the input modalities, with the more certain

(lower variance) channel having a greater ‘weight’ in the �nal judgment. Vision was relied on more by

default, but subjects' judgements re�ected greater weight placed on haptic information as visual inputs

were made noisier (by increasing opacity of the viewing window). Finally, the uncertainty of subjects’

�nal judgements was always less than the uncertainty of the measurement from the more reliable

modality, suggesting that information from both channels was in fact being integrated, rather than

information from the less reliable modality being thrown away.

What’s interesting about this work for our purposes is the way in which information is

integrated. In these models, inference (the process of considering and evaluating hypotheses discussed

48



above) is entirely eschewed. Rather, information is combined analytically – in this case by multiplying

two normal distributions representing independent visual and haptic measurements of the relevant

value.40 When measurements are combined analytically in this way, the full costs of inference are

avoided, leaving only the costs of inference over the subsets of dimensions combined together and the

trivial cost of multiplying gaussians.

Despite the promising start, approaches of this kind face several problems that severely limit

their generality, and hence their viability as models of perceptual inference.41 Here I’ll focus on just one

such problem. In cases of Bayesian cue integration, an analytic solution to integrating the outputs of

partial inferences is available only when integration is mandatory. So, in the case of Ernst and Banks

above, subjects’ perceptual systems were able to recognize that the haptic and visual input came from

the same object, and so it made sense to integrate information from both senses. But we often �nd

ourselves touching and viewing distinct objects, and in these cases we do not integrate information

from haptic and visual channels (Kording et al. 2007). The question then is, how does perception

know which case it is in (whether the objects are distinct or identical) and therefore whether it should

integrate? Models of this integration-decision require nothing less than full inference over the relevant

dimensions to determine whether a single cause of haptic and visual inputs, or distinct causes, is more

likely (see Kording et al. 2007, Beierhold et al. 2007). In this case, the exponential costs of inference

cannot be avoided by analytic integration.

The challenge for the approach above is that delivering the outputs of inference in the general

case seems to require inference. A natural thought at this point is that there might be some heuristic

method for integrating disparate sub-inferences – here a heuristic method is de�ned as one that

41 It’s unclear if the authors of studies of this kind ever intend their models to be understood in this realist way, as models of
the actual computational processes by which the brian solves these inference problems, rather than as demonstrations of the
optimal use of information by whatever process the brain actually implements (that is, whether the models are ever
intended as Marr algorithmic level models). The concerns I’ll o�er here give us reason to doubt that the brain actually
computes inference in the way described by these models, but not to doubt that the brain is sensitive to dependencies in the
ways the model describes.

40 Indeed, Bayesian cue combination is typically framed as independent measurements of a single dimension, rather than
inference over multiple dimensions. What it mimics is true inference over low level haptic and low level visual dimensions in
order to recover the height of an object. Cue combination and inference output the same value if the relevant uncertainties
over size actually are independent and gaussian in the full model.
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integrates sub-inferences well enough to meet the needs of human vision, but is not guaranteed to

work in all cases. Delivering such a heuristic is easier said than done. To get a sense for the di�culty,

consider what heuristic means of integration would give rise to behavior exempli�ed by the Mach Card

described above. What general heuristic tells us when colored light should be seen as part of the

lighting condition, rather than object color? Or could tell the visual system how to update its

assessment of an object’s shape as a function of those assignments? Or recover the number and

location of lighting sources based on the shadows cast on objects of disparate shape? The sheer number

of ways that the dimensions of shape, color, location, and lighting condition might depend on one

another makes the prospect of a heuristic method of integration adequate to human vision itself an

exponentially vanishing prospect. At a minimum here, we can note that no such general heuristic

method of integration has been proposed in the literature.

Our assessment of the viability of these proposals is, of course, subject to change. Perhaps a

heuristic approach to the problem of inferential integration will come along, and one should be taken

seriously if and when it does appear. For the moment, however, there does not seem to be an

alternative to doing inference, which minimally must respect the dependencies described in our toy

inference problem and illustrated by the bistability of the Mach Card. If this is right, then the

assumptions we’ve explored so far are su�cient to land the costs of perceptual inference in

astronomical territory. Any would-be explanation of the tractability of perception must then account

for how those assumptions can be challenged, allowing such costs to be avoided. In the following

section, we look at what it would take to provide an explanation of the tractability of perception along

these lines.

VII. How (And How Not) To Explain Tractability

How to Explain Tractability

It would seem then that we’ve reached an impasse. By our lights the intrinsic costs of

perceptual inference scale exponentially in dimensionality and a mere subset of the dimensions
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involved in perceptual inference run those costs into astronomical territory. For perception to be

tractable, however, the costs of performing inference must not be astronomical. At this point we need

to stop and take stock of the assumptions that got us here and ask ourselves if any of them can

reasonably be denied.

As a reminder, these assumptions were threefold: (1) that good hypotheses are found, relative

to a reasonable performance criterion. (2) that the costs of evaluating hypotheses are relatively �xed.

And (3), that nothing is known about the distribution of good hypotheses in the hypothesis space. We

discussed (1) and (2) at length in Section V.42 That leaves (3). For (3) to be false would mean that

perception has information, in advance of inference, about the distribution of plausible hypotheses in

the hypothesis space. If perception were to have such prior information, this information could be used

as a guide when exploring the hypothesis space. While drawing hypotheses randomly entails

exponential growth in the expected number of hypotheses sampled before �nding a good one, guided

exploration of the space does not – in the guided case, the costs would depend straightforwardly on the

quality of the information used as a guide.43 To deliver tractability, this information must be good

enough to �nd criterion-meeting hypotheses from among astronomical numbers of options in fewer

than K steps.

Take ‘sampling’ to describe the choice that any inference algorithm must make as to where to

look for good hypotheses in the hypothesis space.44 We can call the outcomes of these decisions an

algorithm’s ‘sampling dispositions.’ When these dispositions are informed by information about the

distribution of good hypotheses in the space, we’ll call them intelligent sampling dispositions (ISDs).

With this concept in hand, we can now o�er a precise statement of the problem of the tractability of

inference:

44 In this case, we’re using the term to describe something broader than sampling in the technical sense that is relevant to the
Monte Carlo inference methods that might be familiar to some readers. Sampling in our sense includes any way that an
inference algorithm might go about selecting promising portions of the hypothesis space, including those in
non-Monte-Carlo inference algorithms, such as variational methods.

43 See Chatterjee & Diaconis (2018).

42 P. 30�
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The Challenge of Tractable Inference: The challenge of explaining how perceptual

inference is tractable by accounting for the intelligent sampling dispositions at work in

perceptual processing.

For the rest of this paper, I will defend the claim that the challenge of explaining the tractability of

perception is the challenge of explaining how perception comes to have intelligent sampling

dispositions (ISDs) su�cient to avoid astronomical costs when performing inference in an

astronomical space of options.45 While candidate ISDs abound, delivering on such an explanation that

is up to the task of perceptual inference is far easier said than done.46 What makes it di�cult is that the

location of plausible hypotheses is not �xed, but is rather sensitive to the speci�cs of the problem

instance at hand. We see very di�erent scenes in the course of our lives, and which scene we’re looking

at on any particular occasion dictates where the plausible hypotheses are to be found.

To see why delivering such intelligent sampling dispositions is di�cult, it is helpful to see why

one popular idea, that the perceptual system embodies ‘natural constraints’ on perceptual scenes, is not

a solution.47 The idea of natural constraints is the idea that the perceptual system has access to

(implicitly or explicitly represented) information about how the world typically is. The canonical

example here is the visual system’s sensitivity to the fact that light typically comes from above (see

discussion of shape from shading in Section VI above). That the visual system possesses such a prior

may be true as far as it goes. But such a prior, even if it’s used to inform sampling, is unlikely to address

the issues of computational tractability discussed here. This is for the simple reason that human vision

in fact recovers any number of di�erent lighting sources and lighting directions, and recognizes

47 Or at least not a solution on its own. Note that many of the proponents of information encapsulation are also
proponents of natural constraints (the information in perception has to come from somewhere, after all) and so already
accept that perception has prior information about its domain. I expect for this reason that many will be broadly
sympathetic to the idea that more information is present in the form of ISDs.

46 Any inference algorithm that delivers a speed advantage over exhaustive search or uniform sampling will have some ISDs
that are responsible for its speedup. This includes algorithms making use of the idea that good hypotheses tend to be near
one another (e.g. local MCMC), that good assignments of values to variables will be high probability conditional on good
assignments to other variables (e.g. Gibbs sampling), that the posterior landscape is smooth (e.g. Hamiltonian MCMC,
Variational Methods), etc.

45 See Schulz (2012) for a similar thought in the case of cognitive inference in children.
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�ne-grained local di�erences in lighting condition, such as shadow and mutual illumination (all while

respecting the dependencies between these dimensions and many others, see Section VI). The mere

starting assumption that lighting is singular and comes from above does not save vision from the

requirement to be sensitive to a vast number of other ways that lighting could be, including more

�ne-grained ways consistent with light coming from above, and it is this requirement that entails

astronomical computational costs.

While natural constraints are not themselves enough to deliver computational tractability, they

are the right kind of thing. That is, they are sources of information, prior to inference, about which

perceptual hypotheses are likely to be good. What’s needed to account for tractability is much stronger

sources of this kind of information. In contrast to natural constraints, which embody information

about which hypotheses are plausible in general, what is needed for tractability is more �ne-grained

information about the distribution of plausible hypotheses for the problem instance at hand.48

Why Information Encapsulation Does Not Explain Tractability

Now that we better understand the sources of intractability in perceptual processing and what

is needed to avoid astronomical computational costs, we’re also better able to see why information

encapsulation is not an explanation of tractability. The main idea here is that the costs intrinsic to

perceptual processing are vastly larger than those associated with information access, and this di�erence

in size undermines any intimate explanatory connection between encapsulation and perceptual

tractability. This is the main idea, but I don’t expect the reader to be convinced just yet. As always, the

devil is in the details. In what follows, we’ll go through a series of things it might mean for information

encapsulation to explain tractability – including the possibility that information encapsulation is

su�cient for tractability, that it is necessary, or that it is a di�erence maker. We’ll see how our new

appreciation of the challenge of accounting for perceptual tractability allows us to de�nitively rule out

versions of the EET on which encapsulation is necessary or su�cient for tractability, while leaving us

with strong reasons to be skeptical that it might be di�erence maker.

48 That is, not merely a good prior, but a good estimate of the posterior. For the recurring distinction between dimensions
and information, see p. 38.
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Start with su�ciency. Could avoiding the costs of information access by way of encapsulation

be sufficient for the computational tractability of perception? Based on what we’ve said so far, the

answer to this is clearly no. This is because ISDs are necessary for computational tractability, and a

perceptual system could be encapsulated from a cognitive system without also possessing ISDs. For

example, a simple model aimed at doing the inference described in Section VI might receive no inputs

from any external computational system (and so be encapsulated) and yet lack any ISDs. In the

simplest case, it could perform inference by sampling randomly from the space of possibilities. Such a

model would be encapsulated, but inference in it would be straightforwardly intractable, running up

against the astronomical costs of inference. So encapsulation is clearly not su�cient for computational

tractability.

How about necessity? Could information encapsulation be necessary for computational

tractability? Here too I think the answer is no, but before arguing for this, it’s worth �rst seeing why

this idea commands so much appeal. There is a ton of information in cognition, from random facts

about people, such as names and political persuasions, to the habitats of animals, to memories of your

grandmother’s garden. Perception, for its part, has to operate very fast, on the order of tens or

hundreds of milliseconds, as we saw before. What’s more, some kinds of very demanding search are

certainly intractable. Take, for example, what we might call ‘full relevance search.’ By full relevance

search, I mean sorting a list of information into those entries that are relevant to an inference problem

and those that are not. In the limit, this requires performing the full inference problem once with each

subset of the entries on the list and comparing the results to see which entries make a di�erence (in

di�erent combinations) to the outcome of the inference, in order to determine which entries are

relevant to the task at hand. Such an operation is likely to scale super-exponentially, since it involves

inference (which scales exponentially with dimensionality) being performed as a subroutine

exponentially many times (as a function of the size of the list). Search of this kind would of course be

intractable. If perception were required to do an exhaustive relevance search through cognition in the

course of each perceptual inference, then there can be little question that it would be intractable.49

49 Full relevance search of this kind seems to be what Fodor (1983) has in mind when he writes, “the point of the
informational encapsulation of input processes is not—or not solely—to reduce the memory space that must be searched to
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This is all true as far as it goes. But it is also very far from establishing that encapsulation is

necessary for tractability. This is for three reasons. First, search does not have to be exhaustive, going

through the entire mind to guarantee that it has returned all of the relevant information, in order to

violate encapsulation. Search methods might search some portion of the database that merely

sometimes has relevant information (say, ‘search only memories from the past 24 hours’), or might

search in a way that could access the entire database, but with a limited amount of time in which to do

so (‘search everything but stop after 100 milliseconds’). Other ways of limiting search exist as well.

Instead of circumscribing search on the basis of the store or the duration of the search process, search

could be limited by properties of the information being accessed, say returning values based on their

place in the full list of entries (even very simple organizations of lists keep search costs sub-linear) or on

the basis of their syntactic features (say, ‘return only those memories that explicitly encode the color of

this object’). If perception does in fact search through cognition, it could limit its search in any of these

ways, making the costs of exhaustive relevance search irrelevant.50

Second, not all kinds of search that return some relevant information require sorting that

information into relevant and irrelevant entries, and it is often better not to do so. Consider an over

eager search strategy that returns some relevant information and much that is irrelevant. If we do

inference with this information, the outcome is the same as if we’d done inference without the

irrelevant information (that’s what it is for the information to be irrelevant!). As for computational

costs, the costs are no more than if we’d �rst sorted the list into relevant and irrelevant entries and

accessed only the relevant ones (since the information has to be accessed in both cases – either to be fed

directly into inference or to be sorted) and are often much less (since the super-exponential costs of

sorting are neatly avoided in the over eager case). Inference itself is not more expensive with the

50 Note that in Section III we assumed for the sake of argument that information access could be tied to the costs of search,
despite the possibility of search without access (say, if cognition does search and sends information to perception as an
expectation prior to inference, see Kok et al. 2012). I am not reneging on this deal – the costs of search are still at issue – but
rather pointing out that search does not entail exhaustive search.

�nd information that is perceptually relevant. The primary point is to restrict the number of con�rmation relations that
need to be estimated as to make perceptual identi�cations fast” (p.71). See Fodor (2000) for similar arguments about the
intractability of relevance search.
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irrelevant information, since the costs there are dictated by dimensionality, not information.51 So

search for relevant information need not be the super-exponentially scaling relevance search of the kind

envisaged above.

Finally, search strategies that reliably return relevant information without exhaustive relevance

search are not an idle theoretical possibility. Rather, search strategies of this kind are a �xture of the

modern era, making searching through even extraordinarily large databases fast and e�cient. A typical

Google search, for example, searches Google’s copy of the internet, an enormous body of information,

and returns general relevant results at an average latency of 500 milliseconds.

With all of this in mind, we can now see why encapsulation cannot be necessary for perceptual

tractability. Consider a perceptual system with the following property: after coming up with an initial

guess as to the identity of an object, it runs a Google search to �nd the typical color of that object, and

uses this as an additional input into color and identity processing. This system would be

unencapsulated, in the vein of anti-encapsulation interpretations of color processing e�ects in people

(MacPherson 2012). More importantly for our purposes, if inference in this system was tractable

before adding the search, then it will be tractable afterward. The possibility of such a case shows that,

at least based on our current evidence, encapsulation can’t be necessary for tractability.

Here I want to be clear about what I am saying and what I am not. The point is not that search

in the mind might work just like Google search – very likely this is an unrealistic model. The point is

rather that Google search gives us a proof of concept that some searches over very large databases are

nevertheless very cheap. In a few short decades of computer science, human ingenuity has already hit

upon cheap ways of doing large scale search. In light of that, we would need a very strong argument to

convince us that cheap ways of doing search were out of reach for evolution. And without such an

argument, we should not believe that avoiding the costs of search is necessary for tractability (cp. Clark

2002 for a similar point).

If encapsulation is neither necessary nor su�cient for tractability, then in order for the EET to

be true encapsulation must at least be a di�erence maker. To be a di�erence maker it must be the case

51 See Section V, p. 37 for the distinction between information and dimensions.
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that, given all the facts on the ground, if perception were unencapsulated, then it would be

intractable.52 Here the thought would be that engaging in information access is a discretionary line

item in the brain’s computational budget for perception, and one that pushes perception over budget

after all the essential line items are paid for. The question then is, what reasons could we have for

believing that information access is such a decisive line item? These reasons break down into two

categories. First, we could have reason to believe that those costs are a large part of the �nal budget for

tractability, once all the strategies that evolution has employed to keep costs low in search, inference,

etc. have been taken into account. (This would mean that the costs of information access would also be

a big part of the �nal budget of K once a much tighter bound had been set on K). Second, even if the

costs of information access are not a big part of the budget, we might nevertheless have reason to

believe that they are a small, but critical part of the budget – the �nal line item that just tips the balance

and pushes us over budget. Here, as above, I’ll argue that the vast di�erence in scale between the

problems of inference and access undermines either case for believing that avoiding the costs of access

will be a di�erence maker.

Take the �rst possibility. Do we have any reason to believe that the costs of access will be a large

part of the �nal budget, once we’ve �gured out all of the optimizations evolution has employed to keep

the costs of both access and inference down? In evaluating this admittedly very challenging question,

start with a sociological fact: When computer scientists evaluate the complexity of a program which is

the sum of a non-exponential term and an exponential term, they tend to ignore the non-exponential

term. They don’t do this out of a sense of wanton violence toward an accurate representation of the

complexity of the program, but rather because, empirically, when computational costs are the sum of a

non-exponential and an exponential or greater term, the contribution from the non-exponential term

52 That is, for a natural analysis of what it is to be a di�erence maker, which is to be a necessary condition holding everything
else about the system �xed. See p. 21 for a brief discussion of what it is to be a di�erence maker and how this di�ers from
both necessity and su�ciency.
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tends to be negligible. That is, if the costs of running a program are n^x + 5x, this is typically very well

approximated by n^x.53

New insights into how full inference and exhaustive search might be approximated could, of

course, change this. If evolution has been tremendously successful at keeping the would-be exponential

costs of inference low, while �nding few or no strategies to lower the would-be linear costs of search,

then this could change the relative proportions of the budget that go to each term, leaving search and

access the larger chunk of the �nal budget. There is no doubt that this is possible. But it does not seem

particularly likely. For one, the starting costs are so di�erent that the successes in lowering costs would

have to be remarkably one-sided. For another, as we saw just above, the current state of a�airs paints

just the opposite picture – we currently know of many methods for making theoretically cheap search

even cheaper, while we have very few insights into how theoretically expensive inference could be made

much less expensive. At the very least then, we have no positive reason to believe that encapsulation

will turn out to be a di�erence maker for perceptual tractability by way of being a large portion of the

�nal budget for perceptual processing.

If the costs of information access are not a large part of the budget, we could still have reason to

believe they are a di�erence maker if we have reason to believe that they are a small but critical part of

the budget – the �nal expense that pushes us over budget once all essential operating costs have been

paid. In evaluating this possibility, consider one �nal time the di�erence in size between our

exponential and our linear terms in the theoretical costs of unencapsulated perceptual processing. If

our thinking so far in this paper is on the right track at all, then the �nal costs of information access are

likely to be a drop in the bucket compared to the �nal costs of inference. The theoretical result (based

on the di�erence in theoretical costs) is clear cut, and the convergent empirical evidence (based on the

current ease of search, discussed above, and current di�culty of inference, brie�y surveyed in Section

II) is at least suggestive of a signi�cant di�erence in the computational costs associated with these two

53 The exception to this is when x is small, in which case the linear term will dominate. That does not arise in this case, since
the variables are distinct (the exponential term is exponential in dimensionality, while the linear term is linear in the number
of entries that must be searched) and the exponential term is �xed empirically by the dimensionality of the inference
problem (see Section VI).
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problems. Given our current evidence then, believing that the costs of information access are a small

but still critical portion of perception’s computational budget would require believing that these costs

are going to be the proverbial drop that makes the bucket over�ow. This is certainly possible, but we

have no positive reason to believe it!

We’ve seen that the di�erence in size between the problem of inference and the problem of

access rule out certain versions of the EET (that avoiding the costs of access is necessary or that it is

su�cient) and give us considerable reason for skepticism about others (that avoiding the costs of access

is a di�erence maker). Thus we’ve seen that the original motivation for the EET, what we earlier called

the Haystack Idea, can be safely laid to rest. There is, however, one �nal di�erence making role for

encapsulation that should be examined. This is the possibility that encapsulation might be a di�erence

maker, not by allowing perception to avoid costly search, but rather by being a crucial part of the ISDs

which are themselves critical to the tractability of perceptual inference. In this case, proponents of

encapsulation would acknowledge that the costs of search are likely insigni�cant in explaining

tractability, but would turn to seeing encapsulation as a plausible contributor to limiting the actual

costs of inference. I’ll brie�y argue that even this revitalized version of the EET lacks su�cient

motivation.

As a way of easing into it, start with a simpler thesis, that information encapsulation is

necessary for ISDs. Based on what we’ve established so far in this paper, we know that this can’t be the

case. This is because having an amazing perceptual prior, one with strong expectations about what

you’re likely to see when,54 is su�cient for ISDs. And it’s possible to have an amazing prior while not

being encapsulated from cognition. If a perceptual system came equipped with such a prior, say by way

of evolution or perceptual learning, but were unencapsulated, accessing select information from

cognition (say, just color memories), then this system would exhibit strong ISDs despite being

unencapsulated. At least based on what we know right now then, encapsulation can’t be necessary for

ISDs.55

55 There is also no question that it’s not su�cient for ISDs, since it’s categorically the wrong kind of thing to deliver ISDs –
not a source of information, but merely a prohibition on one.

54 And therefore a good approximate posterior.
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Now consider the possibility that encapsulation might be a di�erence maker – making some

critical contribution to perceptual ISDs, holding all other facts about the system �xed. To evaluate

whether this is plausible, consider how it is that ISDs provide for tractability. They do so by helping to

locate plausible hypotheses from among an astronomically large expanse of random possibilities. At

�rst pass then, any information that might help the system locate plausible hypotheses in this space is

likely to result in computational savings. In the next section, I’ll argue on these grounds that there are

likely to be many cases where information from cognition could signi�cantly reduce the costs of

perceptual processing. The gist of those examples is that cognition can sometimes propose reasonable

solutions to perceptual inference problems, in virtue of sometimes possessing veridical information

about what we are likely to be seeing. For the moment however, let’s just consider what it would take

for information from cognition to be harmful to tractability. In order to signi�cantly increase the costs

of perceptual processing by way of in�uencing ISDs cognition would have to contribute information

that is not just sometimes wrong about what you are seeing, but rather systematically and relentlessly

misleading about what you might be seeing.

To wrap our minds around this point, consider a related downside to cognitive in�uence on

perception that has been discussed in this literature. Some authors have argued that human perception

is susceptible to cases of ‘wishful seeing’ in which someone has some idea of what they would like to

see, and this very idea in�uences the perceptual interpretation of ambiguous stimuli. So, for example, if

I am looking for the mustard in my fridge, I might brie�y misperceive a lemon in the fridge as mustard

(Siegel 2017). Wishful seeing, if it happens, in�uences the outcome of perceptual inference – the

lemon looks to me (perhaps brie�y) as if it were mustard. When the outcome of perceptual inference is

less veridical then it would have otherwise been, wishful seeing has an epistemic cost. What we’re

imagining here is slightly di�erent. We’re imagining a case where cognitive in�uences have a
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computational cost.56 One way to get onto this is to take a case that is like wishful seeing, but which

holds �xed the �nal outcome of perceptual processing. So, in our case, cognition would �rst o�er the

mustard hypothesis, and perception would check it against the data, perhaps rejecting it because the

mustard hypothesis sits poorly with the absence of any noticeable label or cap on the yellowish �gure.

Finally, perception settles on the lemon hypothesis, as it would have if there had been no e�ect of

cognition.

In this case, even though perception avoids any epistemic cost, ultimately settling on the same

output hypothesis, the proposal of the mustard hypothesis creates unnecessary computational costs –

the costs of evaluating and rejecting the falsidical hypothesis. It stands to reason then that, if there were

a su�cient number of such unnecessary hypotheses proposed by cognition, this could run up the costs

of perceptual inference, eventually pushing it over-budget. In such a case encapsulating perception

from cognition’s misleading proposals could be an important part of how the ISDs deliver tractability.

The problem with this line of reasoning should already be apparent. If, on the one hand, the

implausible hypotheses proposed by cognition are just one or a few, then the costs they impose are

negligible relative to the size of the perceptual inference problem. Since we should believe that even

with great default ISDs perception is likely to have to evaluate many hypotheses, the addition of a

handful from cognition seems unlikely to be di�erence making. If, on the other hand, the hypotheses

are not implausible, then evaluating them may not be unnecessary for veridical perceptual inference

(and in some instances may even help). In order for cognitive in�uences to pose a threat to tractability

by this route then, the proposals from cognition must be both highly numerous and systematically

misleading. While it may be easy to imagine that cognition, were it allowed to, might occasionally send

perception an implausible proposal, the idea that it might be a source of of implausible proposals on

the scale needed to threaten perceptual tractability, where the default requirement is to navigate an

56 Of course, both epistemic and computational costs are relevant to tractability, since tractability is relative to both a
budget, K, and a performance criterion (see Section III). If cognitive penetration would bring with it a su�cient decrement
to performance by way of e�ects like wishful seeing, then technically such penetration could make perception intractable by
way of decreasing performance beneath human levels, rather than increasing costs above human levels. I take it that the core
idea behind the EET as it has been defended is that cognitive in�uences would make perception more expensive, not less
accurate, so I won’t consider this back route to the thesis here.
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exponentially large hypothesis space, is a heavy lift. Here again, at least absent some positive argument

in its favor, we should not believe that this is the case.

I’ll say more about the relationship between encapsulation and ISDs in the following section.

At this point however, we should take stock of where we’ve gotten. We’ve seen that encapsulation is

neither necessary nor su�cient for computational tractability – not su�cient because ISDs are

necessary and a system can be encapsulated without exhibiting any ISDs, and not necessary because the

kinds of information that allow for tractability can exist in perception even if it is unencapsulated.

We’ve also seen that the costs of information encapsulation are unlikely to even be a di�erence maker

to perceptual tractability, in light of the massive di�erence in size between the costs of information

access and the costs of inference itself. After establishing that the costs of information access are

unlikely to motivate encapsulation, we �nally asked if encapsulation might be critical to tractability by

way of being critical to ISDs, and found that defending such a view requires believing the proposals

in�uenced by cognition are not merely often non-actual, but both numerous and systematically

implausible. The idea then that tractability considerations motivate encapsulation should be laid to

rest. Many questions remain, however. In the next section, I use some of the tools we’ve laid out in this

paper to explore the future of tractability arguments in this area.

VIII. The Future of Tractability Arguments

The Dimensionality Restriction Hypothesis

At the end of the day, we don’t know how perception is tractable, and this limits what we can

say with con�dence about the bearing that various cognitive e�ects might have on tractability. But we

are not totally in the dark either. For example, we have an understanding of the sources of

computational costs and the factors that in�uence them. Any cognitive e�ect that threatens to make

those prima facie costs exponentially worse should be regarded with suspicion. Similarly, we know the

form that a solution to intractability must take – it must o�er a theory of the intelligent sampling

dispositions that allow perception to navigate its vast hypothesis space. Such dispositions are built on
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information. Any potential source of this kind of information, up to and including cognition, should

be regarded as potentially part of the solution.

Start with an example of the �rst kind. The unfortunate truth of computational costs is that,

while it can be di�cult or even impossible to make a problem easier, it is always possible to make it

harder. Certain kinds of cognitive e�ects could make perception’s problem much harder. Take for

example the ‘enrichment’ of perception by cognition. Some authors have suggested that cognition

might enrich perception, in the sense of expanding perception’s representational capacity to include

dimensions previously represented only in cognition, for example in the process of developing expert

perception (Siegel 2010). Others argue on empirical grounds that perception is dimensionality

restricted, operating over an (at least synchronously) limited set of dimensions, in contrast with

cognition, which is dimensionality non-restricted (Green 2020). The ideas laid out in this paper

suggest that there may be more a priori considerations relevant to this debate as well. Since the prima

facie costs of inference scale exponentially with dimensionality, adding dimensions, whether from

cognition, perceptual learning, or by any other mechanism, could dramatically increase the costs of

perception. Such an e�ect could form the basis for a tractability argument against cognitive

enrichment e�ects and in favor of the dimension restriction hypothesis. Making this case rigorously

would require careful treatment, but the possibility of such an argument follows naturally from the

framework developed here.

Veridical Information From Cognition

Another species of future tractability arguments could put information encapsulation on the

defensive. As we saw above, what’s needed to account for the tractability of perception are sources of

information which help steer perceptual inference toward promising hypotheses. A natural question to

ask, then, is whether information from cognition could support tractability.

Consider the following case. You are wandering around in a jungle and see an ambiguous form

in the branches. Naturally, there are virtually countless possible visual interpretations of the visual

scene. Now imagine that you know that you’re in panther territory. This key bit of information from
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cognition could be used to guide sampling, allowing vision to arrive at an interpretation of the visual

scene much more quickly. A tip of this kind could easily be the di�erence between visually detecting

and missing something that was really there.

How, exactly, could the abstract belief that one is in panther territory be used to guide visual

inference? The technical proposals are too much to get into here. But the underlying process is not that

di�erent from what you would naturally do if I were to ask you to close your eyes and imagine a

panther in that tree. Then to reset and imagine another, distinct scene meeting the same constraint.

And then another. In each of these cases, you are sampling from a space of possible scenes, under the

constraint that they feature a panther in the tree. This cognitively constrained distribution is far more

peaked than an unconstrained prior distribution over all possible scenes, with or without panthers,

thereby guiding visual inference toward the hypotheses that meet the constraint.57

Accounts of roughly this kind have been o�ered as explanations for the phenomenon of stably

resolving ambiguous images (Lupyan 2017, Block 2022). These are images which appear one way at

�rst, say, as an unremarkable brick wall or set of black splotches, but resolve another way when people

are given a clue semantically related to the alternative interpretation. Once their more surprising

interpretation has been seen, it is often di�cult to unsee; a fact which may re�ect the visual systems

assessment that the new hypothesis o�ers a better solution to that particular visual inference problem

(see Figure 2).

57 Note that a procedure like this can work even if the visual system doesn’t explicitly represent high-level contents such as
‘panther’, since the relevant distribution could be a distribution entirely spelled out in terms of low-level properties; those
that would trigger recognition of panthers.
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Figure 2: Visual inference can be a�ected by information about what one is looking at. Look at the

image above and search for anything out of the ordinary before reading this footnote for a hint.58

Image reprinted from Lupyan 2017 (original photographer unknown). For extended discussion of

stable ambiguous images, see Block 2022)

These are not knock down demonstrations of cognition-fed sampling dispositions. Many who

have discussed these e�ects have argued that they are due to attention (Firestone & Scholl 2016,

Lupyan 2017, Block 2022 signals openness to this interpretation). Whether attention o�ers a

competing explanation or is merely the mechanism of cognitive penetration is itself an open question

(Quilty-Dunn 2019, see Green 2020). Cognitively-driven samples are a computational process while

attention is a folk psychological and neuroscienti�c concept and the relationship between the two is

unclear. This is murky territory. My aim in bringing these issues up is not to try to lay them to rest, but

merely to illustrate that the tractability considerations that were once taken to require the

encapsulation of perception from cognition, may in fact support just the opposite conclusion once the

58 On �rst encounter with this image, most people see an small, bluish rock wedged in a stone wall. Given a hint, such as the
quip that ‘Sometimes a cigar is just a cigar’, people see the image di�erently. (If that is not enough of a hint, try seeing the
bluish rock and brown space next to it as a single object, protruding outwards from the wall, with the blue tip farthest from
the surrounding rock.)

65



true challenge of perceptual tractability is appreciated. This reversal holds even if, as is likely to be the

case, most of the information in the intelligent sampling dispositions is internal to perception.

IX. Conclusion

A theory of the architecture of perception must explain how perception is computationally

tractable. This paper has argued that information encapsulation, even if true of perception, does not

provide such an explanation. This is because of the signi�cantly greater costs of perceptual inference, as

compared to information access, which threaten to make the costs of access a negligible proportion of

perception’s computational budget. After all this, it remains an open empirical question whether

perception is encapsulated from cognition, but the encapsulation thesis has lost its computational

raison d’etre. As a consequence, we should be more willing to accept some of the psychophysical e�ects

reported in the literature as genuine violations of encapsulation. We are at the very least not bound on

computational grounds to �nd ways in which these e�ects are not genuine e�ects of cognition on

perception. This is, of course, not to advocate for laxity in our psychophysics or analysis, and

alternative interpretations of putative cognitive e�ects should be carefully proposed and ruled out, but

it is an argument for a more even prior between encapsulation and cognitive in�uence as we approach

these debates.

The framework for thinking about computational tractability laid out in this paper also has

implications beyond the question of encapsulation. For one, we now have an understanding of the

sources of computational costs and the factors that in�uence them. The things that matter to

tractability are things like the dimensions, dependencies, and sampling dispositions involved in

inference. Information is a resource for limiting computational costs, rather than a liability. With these

factors in mind, novel proposals about the architecture of perception can be evaluated for how they are

likely to a�ect tractability. Proposals to the e�ect that cognition might expand the range of dimensions

perception computes over, thereby increasing the dimensionality of perceptual inference problems and

threatening to increase the costs of inference exponentially, have an a priori strike against them, while

the alternative, dimensionality restriction, has an a priori consideration in its favor. Going forward, we
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should be more skeptical of, and more careful to explore alternative explanations for, psychological

e�ects which purport to evince such dimensionality non-restriction (in e�ect, saving for

dimensionality non-restriction and other exponentially costly architectural theses the jaundiced eye we

have hitherto reserved for purported failures of encapsulation.)

We should also look to develop positive accounts of perceptual tractability. Proponents of

information encapsulation were right to think that perception faces a threat of intractability and that

re�ecting on how such a threat is avoided can be a tool in uncovering the architecture of perception. If

anything, this is even more true now; with a vastly larger problem of intractability that is integral to

perception’s essential function, the demand that an architecture allow for tractable inference becomes

a powerful constraint, shaping perceptual architecture throughout.

Deciphering what architectures allow for perceptual tractability is a di�cult problem, but

we’ve already made a start – spelling out the general form that such a solution must take. Any account

must o�er a theory of the intelligent sampling dispositions that allow perception to e�ciently navigate

the vast hypothesis spaces involved in perceptual inference. Such dispositions are built on veridical

information about the distribution of plausible hypotheses throughout the space. In order to deliver

human-like perceptual competence, including critically the ability to recover a large number of

perceptible properties across a vast diversity of scenes, this information must be opinionated (strongly

focusing computational work in narrow regions of the hypothesis space), particular (sensitive to the

directly measurable properties of the scene, rather than rigid constraints expected to apply across the

board), and veridical (concentrating probability mass around genuinely plausible hypotheses). A

theory must tell us where this information comes from and what kind of architecture can gather and

deploy it. Any source of information of this kind (up to and including cognition) should be regarded

as potentially part of this solution, but the key answers are likely to come from a theory of perceptual

learning. Mechanisms of such learning, hitherto treated as something of a black box, are likely to be a

critical part of the theory.
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Chapter 2: Why is Seeing Fast and Thinking Slow?

Abstract: Seeing is fast and thinking is slow. This claim often appears in arguments aiming to identify

mental processes as either cognitive or perceptual or to defend the existence of a divide between the

two. But is it true, and if so why? In this paper, I look at the evidence for a speed di�erence and develop

a potential computational explanation for it. I then show how the thesis sheds light on some otherwise

puzzling phenomena in cognitive science and neuroscience. If this picture is right, it helps us

understand one important way in which perception and cognition di�er.59

I. Introduction

Suppose you are wondering if your partner is home. You notice the keys on the side table,

consider the time of day and the light at the end of the hallway, and think about the last time you heard

a sound. You conclude that they’re likely home. Contrast this with the experience of turning a corner

and seeing your partner in the hallway in good light. Reasoning about your partner’s presence or

absence was slow, while seeing them there was all but instantaneous. This contrast is surprising in light

of the fact that both seeing and this kind of reasoning share a fundamental similarity – they are both

mental processes that recover the state of the world (in this case your partners presence) on the basis of

some data (the keys on the table, or the pattern of light projected onto the retina) by way of the

evidential relationship between the two (the keys placed on the side table upon one’s return, or the way

a 3D form projects onto the retina).

This fact, that seeing is fast and thinking is slow, is often invoked as a premise in psychological

methods and philosophical arguments. It has been the basis for classifying ambiguous mental processes

as perception, for example, to argue that concepts, con�dences, or high-level contents like gender and

race are part of perception, given the speed with which such contents are recovered (Mandelbaum

59 Many people helped me with the ideas in this paper. Many thanks in particular to EJ Green, Jack Spencer, Alex Byrne,
Laurie Paul, Ned Block, John Morrison, Kevin Dorst, and Josh Tenebaum for comments on earlier drafts, to members and
participants of Chaz Firestone’s and Brain Scholl’s labs and the philosophy departments at York and U Penn for feedback
on talks, and to Maddie Cusimano, Ishita Dasgupta, Martin Schrimpf, David Danks, Bob Rehder, Todd Gureckis, and Ian
Phillips for helpful discussion of the ideas in this paper.
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2017, Morrison 2016, Colombatto et al. 2021). (Whether these contents are actually perceptual has

knock on e�ects for lots of other debates, about cognitive phenomenology, whether perception is

probabilistic, or questions about what role the concepts of race and gender play in our lives.) The speed

di�erence has similarly been recruited in arguments about whether what we think can in�uence what

we see, in particular, as the basis for arguments that cognitive in�uences on perception are

incompatible with the speed with which perception operates (Fodor 1983, 2000, Pylyshyn 1999,

Quilty-Dunn 2019, although see Brooke-Wilson Forthcoming). The results of these debates matter to

epistemology (Siegel 2010) and the philosophy of science (via the theory ladenness of perception, see

Churchland 1988, Fodor 1988). Getting clear on whether and why this di�erence in speed exists is the

goal of this paper.

The central thesis is that the di�erence in speed is due to a di�erence in inferential strategies

available to perception and cognition. In particular, perception exploits mutual information across

instances of perceptual problems – in a sense to be made precise – to anticipate the results of

perceptual processing. This allows perceptual processing to start closer to its solution. Exploiting this

strategy in perception makes perception faster, and also more accurate, on computationally more

demanding problems than cognition.

The paper is structured as follows. Section II gets clear on the phenomenon, exploring how the

thesis that there is a speed di�erence between perception and cognition should be understood and

making a tentative empirical case for such a di�erence. Section III o�ers a hypothesis – that perception

exploits prior exposure to its domain in a way that canonical cases of cognition cannot – and shows

how this could account for the speed di�erence. Section IV brie�y explores some alternative

explanations and argues that they do not account for the speed di�erence. Section V provides

convergent behavioral evidence for a di�erence in inferential strategies based on the kinds of errors

found in perception vs. cognition, while Section VI shows how this thesis dovetails with �ndings in

contemporary neuroscience. Section VII draws out some implications of all of this for understanding

of perception, cognition, and attempts to replicate these in AI.
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II. Seeing Fast and Thinking Slow

As I’ll use the term here, perception is the set of mental processes dedicated to gathering

information by way of the sensory surfaces (e.g. the retina for vision or the cochlea for audition). This

includes the �nal stages of these processes, the perceptual outputs, which many believe to be identical

to perceptual experience, but also include person-level unconscious perceptual states should such states

exist.60 Cognition is the set of mental processes that sit between perception and motor control, of

which reasoning and high-level planning (planning abstracted away from motor details) are

paradigmatic examples. Many areas of philosophy and psychology assume that a distinction between

perception and cognition exists. It has also been challenged.61 One of the reasons to accept a distinction

is that certain properties seem to cluster together. Mental processes closely tied to sensory stimuli are

often automatic, e�ortless, and relatively limited in the sets of contents they represent, while mental

processes more divorced from sensory stimuli tend to be more deliberate, e�ortful, and relatively

unlimited in the contents they represent. Speed is also on this list. Perceptual processes are often

seemingly immediate, occurring without any noticeable delay, while cognitive processes are often slow,

occurring with noticeable delays. Call the view that there is such a di�erence in speed between

perception and cognition, ‘Speed Difference’.

Speed Difference is rarely explicitly defended, but is invoked in debates about the classi�cation

of ambiguous mental processes as either perception or cognition. Morrison (2016) uses speed as a

hallmark of perception in making the case for perceptual con�dences,62 while Mandelbaum (2017) uses

the speed of processing to make the case that categorization with a limited set of concepts happens

internal to perception. Little & Firestone (2018) use speed to tell apart perceptual and cognitive

62 For example, on p.19 ‘First, perceptual con�dence is more fully described as the view that con�dence is assigned by a state
that’s conscious, automatic, accessible, dissociable from doxastic states, directed toward perceived objects and properties,
and fast enough that we can’t detect any delay.’

61 A distinction between perception and cognition is assumed in many debates in epistemology (whether perceptual
experience is the basis for all justi�cation; whether perception can be ‘taken at face value’) and philosophy of mind (e.g. the
rich/thin debate about perceptual content or debates about cognitive phenomenology). For one famous challenge to the
distinction, see Clark (2013).

60 See e.g. Firestone & Scholl 2016 for a similar usage.
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knowledge of physics, while Colombatto et al. (2021) use the speed of facial categorization to argue

that demographic features, such as race and gender, are literally seen.

Before looking at the evidence for a Speed Difference, we need to get straight what’s been

claimed. As any of the proponents of the view would acknowledge, many cognitive processes are fast

(e.g. recalling a single fact) and many perceptual processes are slow (e.g. the phase transitions in

binocular rivalry). Block (2022) makes this point in justifying skepticism about Speed Difference (p.

43). Appealing to a di�erence in the distributions of processing times won’t help without some way to

individuate the relevant mental processes (is the relevant cognitive process recalling that a bridge is

closed, realizing that a particular route won’t work, or planning your errands?). The best way, I think,

to understand Speed Difference is by reference to a particular family of tasks of similar computational

structure, namely, inverse inference. Inverse inference is the process of recovering some inaccessible state

of the world on the basis of some set of accessible states, or ‘data’, which suggest, but do not entail, the

inaccessible state. Paradigmatic cases of inverse inference are things like inferring the circumstances of a

crime from the evidence left at the scene, inferring a speaker's intentions from what is said, or

recovering a 3D scene from a 2D retinal projection.

Inverse inference is a central task for both cognition and perception. Visual inverse inference

allows the mind to recover the 3D scene before us on the basis of a blurry 2D image. The 2D image

serves as evidence for the 3D scene, but does not entail it. Similarly, auditory inverse inference involves

recovering acoustic events from the vibrations of the cochlea. Characterized at this level of generality,

inverse inference is most, and maybe all, of what perception does. Cognition also does inverse

inference. When you infer your partner’s presence from the keys on the table, the presence of the keys

is a directly accessible fact while your partner’s presence must be inferred. Inverse inference is not the

only thing that cognition does, things like arithmetic are not inverse inference, but it does capture

many things. Understanding pragmatics involves inferring a speaker’s intended message from the literal

meanings of what was said, reasoning about other minds often involves inferring someone’s beliefs and

desires from their observable actions, while concept learning involves inferring concept meanings from
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sparse evidence, such as examples of a concept’s extension or its use in context. (In what follows, I’ll

often speak just of ‘inference’ rather than ‘inverse inference’ for brevity.)

On the face of it, this category of mental processes may seem like they have little in common

beyond the highly general de�nition of inference. But that similarity on its own is important. That’s

because what makes an inference problem hard or easy, computationally speaking, is similar across

disparate domains. What’s more, many methods for solving inference are interoperable, in the sense

that a method for solving inference in one domain is ipso facto a method for solving it in another.

Where this is not the case, there are often close analogues of methods that work in one domain in

another. In light of computational similarities it would be interesting if, in general, inference in

perception is fast while inference in cognition is slow.

Take the claim that ‘seeing is fast and thinking is slow’ to mean that perceptual inference is fast,

while cognitive inference is slow, for inferences of comparable di�culty. Note that this is a claim about

typical perceptual and cognitive inference, not a universal claim. There are instances of slow perceptual

inference and of fast cognitive inference, both of which I’ll discuss below. This is also not a claim about

what it is to be perception or cognition. There is a lively debate about the necessary and su�cient

conditions for perception and cognition and many plausible candidates (cf. Green 2020, Beck 2018,

Block 2023). The claim I’m interested in here is that typical cases of perceptual inference are fast, while

typical cases of cognitive inference are slow.

There is some evidence to support Speed Difference understood in this way. Typical cases of

visual inference happen in fractions of a second. Starting with light splashing on the retina, the shapes

of objects can be recovered, as measured by masking studies and behavioral responses, in around 110

milliseconds (Baker & Kellman 2018). As measured by neural decoding, objects can be classi�ed in

between 70-170 milliseconds (Hong et al. 2016). In paradigms that measure the time for both

perceptual processing and a motor response, faces can be detected among distractors in realistic images

in around ~380ms (Rousselet et al. 2003), while the gender of a face can be recovered in about ~400ms

(Barragan-Jason et al. 2012), and a familiar face recognized around ~580ms (ibid.).
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Similarly fast estimates hold for non-visual modalities. Take auditory perception. Recognition

of sound categories (face, percussion, strings) based on just timbre cues (with pitch duration and

power normalized) is estimated to take around 500ms, with accuracy at ceiling (Agus et al. 2012). That

500ms includes the 250ms needed to convey the stimulus and the time to mount a motor response. A

paradigm based on RSVP for audition, in which naturalistic sounds were presented in rapid

succession, showed recognition for sounds presented at a rate of 30 per second (Isnard et al. 2019).63

Famously, speech shadowing, which requires recognition of phonemes and the motor planning and

execution to reproduce them, can occur with a latency of 150-250ms (Marslen-Wilson 1973, 1985).

We can use these �gures to put some round numbers on the speed of typical perceptual

inference to facilitate our thinking downstream. In the face studies above, subjects were required to

make a motor response to indicate whether they’d seen a target (a face, familiar face, or face of a certain

gender). They were able to do this in about half a second (500ms). In the limit, if we imagined that

planning and executing a motor response took 0ms, that would give us a 500ms upper bound for an

estimate of typical visual processing. On the low end, we saw visual recovery of properties such as shape

and category membership approaching 100ms. Going forward, we can use 100-500 ms as an estimated

range for the time course of typical perceptual inference.

So perceptual inference is fast. In contrast, typical cases of cognitive inference appear to be

quite slow. This is a widely held belief in the �eld and the circumstantial evidence points in its

direction. Take prosopagnosics. These are individuals who lack the ability to perceptually identify

individual faces while maintaining otherwise normal perceptual and cognitive function. Subjects with

prosopagnosia do not see facial identity the way that neurotypicals do, but can learn to identify faces by

a cognitive strategy. These subjects are generally about 10-30 times slower, and signi�cantly less

accurate, than neurotypicals at recognizing faces, even after years of practice (e.g. Marotta et al. 2002).

In this case we have the very same task being performed by perception and cognition, but an order of

magnitude more slowly in cognition than in perception.

63 Although note that there are concerns with this paradigm (Block 2023).
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One well-studied domain of cognitive inference is ‘category’ or ‘concept’ learning. In a typical

category learning study, subjects are shown a number of examples of a ‘category’ and tasked with

learning the underlying intension that de�nes the category. Experimenters can then assess which

intensions were learned based on subsequent categorization behavior. These tasks have been of interest

to psychologists because it’s thought that they mirror the concept learning that goes on in early child

language acquisition (e.g. learning that a mug is made of ceramic with a cup shape) as well as some

adult cognitive inferences.

In a classic study of this kind, Kemp et al. (2012) tasked subjects with learning an underlying

category intension de�ned by boolean combinations of a few salient visual features. Participants were

presented with a set of ‘in’ category objects and another set ‘out’ of category. Subjects were told to look

at the objects during a learning phase before moving onto a test phase, where they were tasked with

sorting a random array of objects according to the category. Depending on the complexity of the

underlying rule to be learned, participants took between 40 and 70 seconds in the study phase before

clicking to the test phase.

We can use these numbers to get some purchase on the idea that cognitive inference is slow.

Take 50 seconds as a middle-of-the-road value for learning a concept in this study. That number is

considerably larger than the numbers we saw for perceptual inference. Depending on whether we use

the low end or the high end of our estimate for typical perceptual processing, the reaction times for this

cognitive inference are about 100 to 500 times slower than for perceptual inference alone. It is, of

course, not surprising that full reaction times for cognitive inference, which includes the time for

perceptual inference, cognitive inference, and motor control and output, is longer than the reaction

time for just perceptual inference and motor control. What is surprising is that the reaction time for

cognitive inference, minus the time for perceptual inference and motor reactions, is significantly longer

than for perceptual inference and motor control alone. That is, subtracting 500ms (our estimate for

the time course of perceptual inference plus a simple motor output) from 50 seconds, we still get a

value about 100 to 500 times slower for cognitive inference alone than for perceptual inference alone.64

64 Put more cleanly, it is not surprising that RTC > P + M. But it is very surprising that RTC – (P+M) >> P.

74



These numbers o�er some support to the idea that perception is fast and cognition is slow.

There are, of course, limitations to using these studies for this purpose. Many variables were not

controlled for. For example, the motor outputs were not the same (moving a �nger in one case vs.

dragging a cursor in the other), and we don’t know how many perceptual inferences may have been

required to do the concept learning task. If the di�erence in time we were looking at were a question of

100s of milliseconds, rather than 10s of seconds, these kinds of confounds would be very worrying. But

a di�erence in speed of 100-500x o�ers us some cushion. If the di�erence in processing times were to

be explained by the number of perceptual inferences (people looking at category instances) in the

course of category learning, we’d need in the ballpark of 100-500 perceptual inferences as rate limiting

steps in the cognitive inference. But there were only 8-24 things to look at, depending on the

condition. Similarly for motor outputs, we can draw comfort from the size of the di�erence. It might

have taken subjects a half second longer to click out of a screen than to tap a �nger, but it’s unlikely to

have taken them 20, 30, or 40 seconds…

Massive di�erences in observed processing times then lend support to the common belief in a

Speed Difference, despite some confounds. Future work should aim to investigate the question directly,

controlling for as many confounds as possible. For now, however, I’ll take the Speed Difference to be

established and turn to possible explanations for it.

III. Amortized Inference in Perception

In this section I o�er a thesis about why perceptual inference is fast. Before spelling out the

positive thesis, I’ll provide some background about what makes inference hard from a computational

perspective.

What makes inference hard? As we saw above, inference involves recovering the likely state of

the world on the basis of some data, which suggests but does not determine that state. The full

landscape of things that contribute to the computational di�culty of this process is both complex and

not fully understood. An important part of what makes a particular inference hard, however, has to do

with the size of the problem. The ‘size’ of the problem is the space of total states of the world from the
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point of view of the problem. Put concretely, if vision has to recover a 3D scene on the basis of a 2D

retinal projection, then the size of the problem is, minimally, all the possible 3D scenes that could be

seen and the 2D projections that would cause one to see them. Problem size, in this sense, has a close

relationship to computational di�culty. Across many di�erent computational methods for doing

inference, starting with a problem that we can solve and increasing the problem size very rapidly takes

us to a problem we can no longer solve. Conversely, for many real world problems we wish we could

solve in reasonable time, we �nd we can solve very restricted versions of the problem that operate over a

much smaller hypothesis space.

The reason problem size plays such a big role in problem di�culty is because a method for

solving an inference problem has to be sensitive to the full breadth of possibilities. Whether a 3D scene

is the most likely scene given an image (or in the top K most likely scenes, or above some threshold

probability) all depends on how likely the other scenes are. Reliably delivering good hypotheses

requires sensitivity to that space of other possibilities. This space gets very big very quickly. The

number of possible 3D scenes is an exponential function of the primitives that make them up

(properties like color, shape, location). If we imagine the simplest possible case of visual inference,

seeing a single object against a blank background, then if that object can have one of two shapes and

one of two colors, the number of possible scenes is 2^2. If the object can also be in one of two possible

locations, there are 2^3. For realistic cases of inference, this means that the number of possibilities is

enormous (I’ll give an example in the next section).

Big problem spaces plus the requirement to be sensitive to them makes inference hard because,

in many cases, good hypotheses cannot simply be read o� of the image. 3D properties of the scene, for

example, are confounded in the retinal image, often in elaborate ways. A splash of green light on the

retina could be due to a green object in neutral light, a neutral object in green light, or any number of

other combinations of object and illuminant color. Finding a likely 3D scene requires credit

assignment – When one fact (the object color) is taking credit for the greenness of the light on the

retina, another one (the illuminant color) should not be. To do this in a general way means evaluating

hypotheses holistically, rather than piecemeal, evaluating how well a joint assignment of object color
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and lighting condition �ts with the image. When there is a large space of hypotheses that must be

evaluated individually, inference will be very hard.

Other features of a problem, like the particular distribution of good hypotheses in the space

(whether they cluster together or are dispersed), the degree to which the values of the hypotheses are

confounded in the data (the strengths of the dependencies), or the information that evaluating subsets

of hypothesis carries about the larger space, can all make a di�erence to the di�culty of inference.

What all of these have in common is that they force an algorithm to rely on less targeted, and therefore

more random, search, in a vast possibility space. So the problem size plays a central role in the

computational di�culty of inference.

With that background in hand, we can turn to developing a hypothesis about why seeing is fast

and thinking is slow. The thesis I want to defend is that perception is fast and cognition is slow because

typical instances of perceptual inference are highly similar to one another, in a way that can be made

precise, while typical instances of cognitive inference are not. Solving similar inference problems costs

less because more work can be done by traces of previous computations, leaving relatively less work to

be done by online computation.

The basic idea, that traces of previous computations can be traded o� against online

computation, is highly general, but applying it to inference takes some care. There are many ways this

trade o� can be implemented. A system might store query-answer pairs for particular problem

instances its solved in the past. This makes solving ‘new’ problems trivial if they happen to overlap

exactly with stored queries, but provides little help otherwise. More powerful solutions can be devised.

A system might store the results of sub-computations that commonly recur across problem instances

(such as storing earlier �bonacci numbers when calculating the series), or it might store probabilistic

information about what good solutions are likely to look like for di�erent queries.65

This last strategy is the one I want to focus on here. Speaking roughly, I want to claim that

instances of perceptual inference are relatively similar to one another, in the sense that solutions to

instances of perceptual inference carry signi�cant information about the plausible solutions to other

65 See Dasgupta & Gershman 2021 for discussion and examples of each of these.
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instances. This similarity across the space of possible perceptual inferences can be exploited by keeping

track of the relationship between queries (e.g. images) and plausible hypotheses (e.g. 3D scenes).

Exploiting this similarity allows perception to solve novel instances of inference at a fraction of the

computational cost.

In order to spell out this intuitive idea properly, we need to think about the process of

inference in formal, information theoretic terms. Bayesian inference tells us how to integrate the prior

plausibility of individual hypotheses, a ‘prior’ distribution P(H), with the probabilistic connection

between a given hypothesis and the observed data, a ‘likelihood’ P(E|H), to deliver a post-update

assessment of the plausibility of each hypothesis, the ‘posterior’ distribution P(H|E).

Viewed as a pure mathematical operation, this is all there is to inference: a prior, a likelihood,

and the resulting posterior. As a computational process, however, inference involves another part,

which tells the system in what order to consider the hypotheses. We can call this the ‘proposal

function.’ As I’m using the concept here, any method for doing inference that considers individual

hypotheses must have a proposal function, because something in the algorithm determines what

hypotheses it will evaluate.66 A proposal function can be deterministic or stochastic, and can be

unconditional or conditioned on various aspects of the problem. (When it’s stochastic, I’ll refer to it as

a ‘proposal distribution’.)

The proposal distribution doesn’t appear in discussions of the pure mathematical inference

because it doesn’t make a di�erence to the true posterior. For the mathematical operation, it’s as if all

the hypotheses are considered once. But in most real world cases of computing inference, where the

problem spaces are far too large to consider more than a negligible fraction of the possibilities, the

proposal function matters a great deal. Which hypotheses are prioritized will often make a big

di�erence to the runtime, accuracy, and many other features of the computation.

We can ask what makes a proposal distribution better or worse. Unsurprisingly this has to do

with the relationship between the proposal and the posterior as well as with what exactly we’re trying

to accomplish. If we want to approximate the posterior with samples, then a proposal that is as close to

66 As I’m de�ning it then, ‘proposal function’ generalizes a more technical concept which is speci�c to sampling methods
for inference.

78



the posterior as possible is ideal.67 If instead we want the most likely hypothesis in as few samples as

possible, then a distribution that concentrates proposals around the most likely hypotheses, including

prioritizing them even more than the posterior, is better.

A natural place that people look for a proposal distribution when building a system to solve

inference is the prior. The prior is, by de�nition, the epistemically closest distribution to the posterior

before the system has received new evidence. We can do inference by using the prior as a proposal

distribution and accepting or rejecting samples deterministically depending on whether they are

consistent with the evidence. This algorithm, known as ‘rejection sampling’, converges to the posterior

distribution in the limit, but is often impractical. When evidence is surprising (receiving low absolute

probability on the prior), most samples will be inconsistent with it. In these cases, the algorithm will

have to work very hard – proposing and rejecting many samples from the proposal – in order to obtain

a single sample from the posterior.

The way to improve the proposal beyond the prior is to try to take into account the evidence as

much as possible, short of doing intractable inference. This can be done by using immediately

accessible features of the evidence as inputs to the proposal function; reallocating probability mass in

the proposal distribution as a function of which features were present in the evidence. These tailored

proposal distributions can place more probability mass on good hypotheses,68 meaning that fewer

hypotheses will have to be evaluated in order to deliver the best ones. Call these tailored proposal

distributions ‘Evidence-Informed Proposal Distributions’, or ‘EIPDs’ for short (see Figure 1).

68 Hypotheses receiving relatively high probability on the posterior

67 The costs of inference for a sampling method is a direct function of the divergence between the proposal and the
posterior (Chatterjee & Diaconis 2017).
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Figure 1. A proposal distribution Q(H) and an evidence-informed proposal distribution QE(H) are both

sampled from in order to approximate a posterior distribution or a decision over it. Orange points are

samples. The evidence informed proposal distribution places more probability mass around the most likely

hypotheses on the posterior, resulting in better samples. (Note that in real world cases of inference posteriors

will almost never be Gaussian.)

[Figure 1]

If a system is solving inference for the �rst time, there is not a general way (short of doing

inference) to know what features in the evidence should be used to inform the proposal distribution or

which hypotheses they recommend – that is, no general way to have EIPDs. But EIPDs and the

features that inform them can be acquired through prior exposure to the domain. This allows the

system to spread out or pre-pay the costs of inference, limiting how many hypotheses must be

considered at run time, by drawing on information from prior exposures. Processes of roughly this

type have been dubbed ‘amortized inference’ (Gershman & Goodman 2014) or ‘inference compilation’

(Le et al. 2017) to invoke these metaphors of spreading out or pre-paying the costs of inference and

have been implemented in models for a variety of di�erent tasks, including visual inference (Yildirim et

al. 2020).
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With these concepts in hand, we can state the thesis precisely:

Perceptual Amortization Hypothesis: Perception is fast and cognition is slow because

perception’s evidence-informed proposal distributions are more concentrated, placing more

probability mass around the most likely hypotheses, than are cognition’s evidence-informed

proposal distributions.

That this computational di�erence, between the information theoretic strength of the EIPDs

in perception and those in cognition, exists is one of two core claims of this paper. The second is that

this di�erence can explain the Speed Difference. As mentioned, when probability mass is concentrated

around the most likely hypotheses, e�ectively prioritizing them for evaluation, many fewer hypotheses

have to be checked against the prior and the likelihood in the course of computing inference. We can

put a point on this by imagining that we are drawing samples from a proposal distribution until a

decision over the resulting approximate posterior will get us within some error, say 𝜖 = 0.03, of the best

hypothesis on the posterior. If our proposal distribution places more probability mass over the more

likely portions of the hypothesis space, then fewer draws are needed in order to meet that threshold (see

Figure 2).
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Figure 2.More concentrated proposal distributions mean that fewer samples are needed in order to get

within a given error threshold for successful inference. Orange dots illustrate samples drawn from the

proposal distribution but evaluated against the posterior.

[Figure 2]

The connection between amortization and speed can be demonstrated empirically. Yildirim

and colleagues implemented a model featuring amortized inference and compared it to an unaided

inference technique based on sampling (Yildirim et al. 2020). The model featuring amortization

showed highly accurate responses even when very few samples were taken (see Figure 6). Run on a

given input, the amortized model near instantly converges to a highly accurate response, while

sampling based inference must be run for hundreds of iterations before it nears the same level of

accuracy.

Figure 6. Amodel of visual face processing featuring amortized perceptual inference (Efficient Inverse

Graphics or ‘EIG’) in red is compared to a conventional sampling based inference method. (Figure from

Yildirim et al. 2020)
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At this point this has all been necessarily abstract. It may be helpful to imagine how these

EIPDs are implemented in practice. We can start with an example of the operation of the proposal

function in perception. Take a look at Figure 3.

Figure 3. Upon first exposure to these images most people see some splotches of ink on the left and a brick

wall, perhaps with a blue-ish rock wedged in it. See if you can see any more in either of these images before

reading the footnote for a hint.69

[Figure 3]

Most viewers will see the images in Figure 3 one way at �rst and then experience their percept

�ip after being given a hint as to an alternative interpretation. Most (although not all) will �nd that

they are unable to recover the original percept after undergoing this change. There are di�erent

potential explanations for these stably resolving images, but a natural one highlights the role of the

proposal function in probabilistic inference. This explanation goes as follows: The percept that the

visual system ultimately settles on receives higher probability on the posterior. Because of weak or

misleading cues in the image however, this superior hypothesis is not proposed on �rst encounter with

the image, resulting in the �rst percept. Forcing the hand of the proposal function by giving a hint

69 With further study or a hint most people will come to see the image on the left as a cow, facing the viewer and leaning over
a wire fence. The image on the right can often be resolved to see a cigar, wedged in the wall and jutting outwards, with the
blueish ‘rock’ in the center at the tip of the cigar, with the brown body of the cigar to the right.
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results in the superior hypothesis being proposed and evaluated. Because it has higher probability on

the posterior, the later interpretation sticks.70

A natural follow up question is, what are the cues that serve as inputs into vision’s EIPDs? The

short answer is I’m not sure. But the place to start is with the features highlighted by vision science.

Geometric features such as the presence of parallel lines in an image, �lters that can be combined to

detect textures or local contours, and complex functions of these, can all be used to prioritize di�erent

hypotheses about the 3D form (see Figures 4a and 4b). None of these features determine 3D shape –

they can all be frustrated by other things going on in the image, from occlusion and overlap, to

coloring patterns, atypical textures, or poor lighting – but they all carry information about more or less

likely 3D scenes.

Figure 4a. Some simple geometric properties of a 3D shape are reliably preserved across many viewing

angles. These ‘non-accidental’ properties do not determine 3D shape – camouflage, overlapping objects of

similar color, or merely poor lighting, all mean that even these simple 3D properties cannot be read off the

image – but detection of such 2D properties can still help prioritize certain 3D hypotheses (Witkin &

Tenenbaum 1983, Biederman 1987; Image adapted from Amir et al. 2012).

70 The mode of action of the hint could be cognitive penetration or some low level attentional strategy – this account of
stably resolving images is agnostic as to the mechanism by which the proposal function is in�uenced.
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Figure 4b. Features used to inform EIPDs can be categorical – either present or absent in the image – or

graded – more or less present in degrees. Soft features, such as these, may nevertheless carry significant

information about plausible 3D scenes, especially when used in tandem with one another. These wild

looking features are the result of optimizing for discriminability between images – and certain neural

populations appear to be selective for them (Bashivan et al. 2019).

[Figure 4]

We can use features like those in Figure 4 to tentatively diagnose the failures of vision’s

proposal distribution in Figure 3. The �rst image in Figure 3 is highly overexposed, signi�cantly

degrading any local geometry or texture information. There are no edges to be detected between large

swaths of the cow’s head and the background and minimal texture information throughout. In the

brick image, the cues are not absent but rather adversarial – the rough colinearity of the cigar with the

crevice in the brick wall e�ectively masks one of the image-detectable features that might have

otherwise been used to prioritize hypotheses that include a protruding object. (That these cues o�er an

explanation of why we miss things in these images on �rst encounter suggests that they are being used

to inform visual proposals, while the fact that we ultimately resolve the images even while these features

remain degraded or adversarial suggests that vision is evaluating 3D hypotheses against something more

than just those features.)
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This gives us a sense of how we might think about EIPDs in vision and the features that inform

them, but I want to stress that my chief claim is implementation agnostic. One could disagree that

these features are represented in vision or that this is the right explanation of stably resolving images

and yet still agree that the Amortized Perception Hypothesis o�ers the best explanation of the Speed

Difference.

I’ll end this section by saying a few words about how this idea relates to one other in�uential

idea in vision science, that of Marrian ‘natural constraints.’ The phrase ‘natural constraints’ is often

used to express the idea that there is implicit information about how the perceptual world works inside

of perceptual systems. The canonical example of natural constraints is that vision assumes that ‘light

comes from above.’ This assumption allows otherwise ambiguous shading in the 2D image to be

resolved as 3D shape.71 This idea gets something deeply right about perception. That said, the idea is

too vague to do the work we want to do here. For one, it’s ambiguous between a claim about the prior

and a claim about the proposal. When natural constraints are used to explain why inverse problems

have well-formed solutions, that makes ‘natural constraints’ a claim about the prior (this is sometimes

made explicit, e.g. Mamassian & Landy 2001). Since I’m arguing for a claim about the proposal

function, this is orthogonal to my thesis. There’s room for other versions of the Marrian idea that see

natural constraints as contributing to the proposal function instead. In that case, my view is a version

of this idea. Even then, the computational and information theoretic vocabulary is needed to make the

comparison between perception and cognition that I’m interested in. Cognition’s proposal functions

are presumably also in�uenced by the evidence (and so feature natural constraints, in this sense, as

well). It’s not clear that there are more natural constraints in perception than in cognition. The

computational and information theoretic vocabulary is needed to state a di�erence between the two

that could explain the Speed Difference.

With that clari�cation out of the way, we can turn to other possible explanations.

71 A phenomenon known as ‘Shape from Shading.’
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IV. Alternative Explanations?

So far we’ve seen some evidence that seeing is fast and thinking is slow and I’ve o�ered a

hypothesis about why that might be. In this section, I want to look brie�y at three alternative

explanations and say a bit about why I think each is less promising than the Perceptual Amortization

Hypothesis. These potential explanations are problem size (‘Perception is faster because its problems are

smaller’), hardware di�erences (‘Perception is faster because it is implemented by faster hardware’), and

accuracy (‘Perception is faster because it solves its problems less accurately’). Examining why these

alternative explanations do not work will also help us deepen our understanding of the problem and

what a potential solution must o�er.

Consider problem size. I mentioned that the size of an inference problem is a big part of what

makes it di�cult. A natural thought then is that if cognition’s problems were much bigger than

perception’s, then this could explain the Speed Difference. To put it bluntly, I think this approach is not

promising. This is because the empirical facts point in just the opposite direction of what the

explanation calls for. Perceptual problems which are solved quickly seem to be much larger than

cognitive problems that are solved slowly.

Take the category learning experiment discussed in Section II. We saw that subjects take about

50 seconds to learn a category de�ned by boolean operations and simple quanti�cation over visible

properties. The size of this inference problem is given by the number of possible expressions made up

of the relevant literals, connectives, and quanti�ers. The space of such expressions is in some sense

in�nite, but we can be con�dent that subjects are not entertaining arbitrarily long formulas. The

model of category learning that the authors used in the paper, which delivered good �ts to human

learning times, considered logical rules using a maximum of 2 quanti�ers and 4 literals, with

conjunctions and disjunctions as needed to combine them. Taking this model at face value, we can

place a loose upper bound on the number of syntactically distinct hypotheses of about a billion

expressions.72

72 Assuming at most four conjuncts or disjuncts, since adding more is guaranteed to be syntactically invalid, the number of
syntactically distinct possibilities is bounded by 8^10, or about 1 billion (8 possible syntactic elements and 10 slots). Since
that includes meaningless strings like ‘∧∧∧∧∧∧∧∧’, semantically redundant strings that include the same literal
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A billion is a lot of hypotheses. It’s far more than you’d want to write out. But it’s also

negligible relative to the size of inference problems solved in perception. Take an extremely simple case

of visual inference: imagine you are looking at an object against a blank background. The number of

distinct hypotheses here is given by the number of di�erent visible properties that the object could

have. We’ll consider a small subset of these: color, location, shape, and lighting condition. The number

of possible 3D scenes in this problem is a function of how many colors, locations, shapes, and lighting

conditions we can see. We can put estimates on these. For color, it’s estimated that we can see between

1 million to about 10 million. We’ll say it’s a million (10^6). Lighting conditions can be discriminated

along dimensions analogous to object color, the brightness, chroma, and saturation of the light

(Tokunaga and Logvinenko 2010) so we might venture that there are another million lighting

conditions. For location there are not well documented estimates, but we can conservatively imagine

that we can visually distinguish at least a thousand di�erent locations in each direction of visual space.73

That gives us about a billion possible locations.74 The last dimension, shape, is the hardest to estimate.

How many di�erent objects are discriminable, when shown side-by-side, on the basis of shape alone?

Even in just two dimensions the number must be huge – Consider the number of classes of objects

that are discriminable based on their silhouettes, from chairs, to keys, splotches of ink, or animal

�gures, and the number of individual objects that are discriminable within these classes (e.g. the

number of chair silhouettes that can be discriminated between). In 3D the number of possible shapes

will be even greater. While precise estimates are tricky, I’ll o�er that there are a billion possible values

for visual shape as an extremely conservative estimate.

Multiplying these dimensions together we get a hypothesis space of 10^30 possible ways that

an object could be. 10^30 is much bigger than a billion. And this is for a toy visual inference problem.

One could try to resist these numbers in various ways, for example, by imagining that vision solves

74 Note that distortions in visual space may mean that there are fewer discriminable locations along certain dimensions, like
depth, than others (Green & Rabin 2019).

73 Discriminability places a lower bound on the number of values that can be represented, since discrimination requires
distinct mental representation. The number of values could be higher however, if for example, visual noise or lack of cues
prevent the optimal use of distinct visual representations for discrimination.

conjoined, and strings di�ering from the syntactic constraints placed on the authors model (e.g. with more than 2
quanti�ers), this number represents a very loose upper bound.
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inference for these di�erent dimensions piecemeal, avoiding the exponential number of interactions.

But breaking problems up in this way means giving up the ability to represent dependencies between

dimensions of the kind that are widespread in perception. I’ve chosen these four properties of visual

3D scenes because there is strong evidence that they are jointly recovered, as illustrated by

psychophysical e�ects such as shape from shading (Ramachandran 1988), shading cues to lighting

direction (Morgenstern et al. 2011), and the Mach Card (Bloj et al. 1999). While modularity internal

to perceptual modalities may play a role, it does not seem like it can tame the vast sizes of perceptual

inference problems (See Brooke-Wilson Forthcoming for a more discussion).

So the empirical facts seem to �y in the face of a would-be explanation based on problem size.

This argument is quick and there is much, much more to be said on the topic, but I think

considerations like those above make a prima facie case against the problem size explanation – enough

to warrant looking elsewhere.

Another possible explanation of the Speed Difference comes from di�erences in hardware

between perception and cognition. There are many possible di�erences that might be relevant here,

but we’ll focus on two that researchers have emphasized. One is parallel processing. Many have

remarked that much of what goes on in perception happens in parallel, while processing is cognition

appears to be more serial. Another possible di�erence has to do with the time of the basic operations.

Areas dedicated to perceptual tasks may be packed more tightly together, in visual or auditory cortex

for example, while cognitive processes may involve long range connections that span the brain. Action

potentials take time to move through space, and so the added distance might mean that basic

operations implementing cognition simply take longer than those implementing perception.

Either of these or other di�erences in hardware might be part of the explanation of the Speed

Difference. But they won’t be most of the explanation. This is because the kind of speed ups that these

di�erences o� are too small relative to the di�erences in problem size and speed between perception

and cognition. Concretely, the most that either of these hardware di�erences could o�er is a factor of

N speed up (if perception has N processes running in parallel to cognition’s 1, or if perception’s basic

connections are N times shorter than cognition’s). But what’s needed to explain the Speed Difference is
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an exponential speed up. Our toy case of visual inference is 21 orders of magnitude larger than a simple

cognitive inference, despite taking two orders of magnitude less time to solve. Very crudely, that means

we’re looking for something north of a 23 orders of magnitude speed up. Since there are only about

100 billion (10^11) neurons in the brain and many, many fewer in visual cortex, parallel processing

can’t do most of the work that needs to be done here. Shorter range connections are even more

hopeless. The main explanatory speed ups, those doing most of the work in closing the gap between

perception and cognition, will have to come from elsewhere.

That last candidate explanation that I’ll consider has to do with accuracy. Even very hard

inference problems can be solved quickly if they can be solved inaccurately. In the limit, a system can

give a random answer as fast as it can roll an internal die. Giving more accurate answers often takes

more computational work. This is why speed-accuracy trade-o�s are ubiquitous in psychology,

showing up in perception (Heitz 2014), cognition (Wang & Xu 2015), and in non-human animals

(Chittka et al. 2009). They are a common feature of many methods for inference in computational

statistics.75 If perception were much less accurate than cognition, then this could o�er a potential

explanation of the Speed Difference.

I think this too is not promising, largely because, like the problem size explanation above, the

empirical facts appear to be just the opposite of what the explanation calls for. It seems perception

solves its inference problems very accurately, while typical cases of cognitive inference exhibit striking

inaccuracy.

Start with some theory. In inverse inference, the data tend to underdetermine the state of the

world, with the former suggesting but not entailing the latter. This means that the best possible

performance is often not perfect accuracy, but rather some other limit, de�ned by the amount of

information in the data. Performance that is ‘optimal’ in this sense – delivering the maximum expected

accuracy – o�ers a natural point of comparison when considering the accuracy of inferential systems.

Perception appears to be close to optimal, in this sense, while cognitive inference is comparatively far

o�.

75 For example, all sampling-based inference and numerical optimization.

90



The literature evincing optimality in perceptual inference is vast. To take an example, Brainard

et al. (2006) built a bayesian model of color constancy in simple images, using a naturalistic prior over

lighting condition to recover a posterior over surface colors. The authors showed that human color

judgements were well modeled by optimal responses from this model, including both the successes and

failures of color constancy. Similar optimality results have been found for many other perceptual

inferences, including inferences to recover contours (Geisler & Perry 2009), orientation in depth (Knill

& Saunders 2003), size (e.g. Ernst & Banks 2002), location across a range of modalities (e.g. Van Beers

et al. 1999, Kording & Wolpert 2004, Battaglia et al. 2003), and even number of perceptual events

(Bresciani et al. 2006) (for reviews, see Ma 2019; Rescorla 2015).76

In contrast to the impressive accuracy of perception, cognitive inference exhibits striking

degrees of inaccuracy. Some of these e�ects are quite stark – like people’s tendency to neglect

information about base-rates (Kahneman 2011). Other patterns of inaccuracy are more subtle. Studies

of cognitive inference across many domains suggest that subjects give sub-optimal responses with a

puzzling kind of regularity. In the category learning studies, for example, subjects appear to ‘probability

match’. Probability matching describes a pattern of responses in which the frequency of a given

response roughly matches the probability of that response on the posterior. Subjects employing this

strategy will respond with an answer that has only a 5% chance of being true 5% of the time, will give a

value with a 10% chance of being true 10% of the time, and so on. This response strategy leaves

considerable accuracy on the table compared to the optimal strategy seen in perception. Apart from

category learning, probability matching and similar behaviors have been documented in cases of causal

inference (Denison et al. 2013), prediction of chancy events (Vul et al. 2014), and in reasoning about

causal interventions (Meng et al. 2018, Nussbaum et al. 2020).

There’s much more to be said here, but an initial look at the literature suggests that perceptual

inferences are signi�cantly more, not less, accurate than those in cognition. Like for the problem size

explanation, the empirical facts are just the opposite of what the accuracy explanation calls for.

76 Disagreements about perceptual optimality tend to exist on the margins. Rahnev & Denison 2019, for example, argue for
several ways in which perception deveats from optimal accuracy, including idiosyncratic ways of setting their cost function,
sequential e�ects, and �ag debates about whether con�dence ratings are themselves optimal. These are many interesting
questions here, but none that change the basic story: That perception is extremely accurate.
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Perception seems to perform more quickly, and more accurately, on much larger problems than

cognition. There are, of course, other potential explanations for the Speed Difference, especially related

to other algorithmic strategies for taking advantage of problem structure. For the time being, however,

I’ll leave things here and turn to some positive evidence in favor of the Perceptual Amortization

Hypothesis.

V. Behavioral Signatures of Amortization

In this section I argue that the Perceptual Amortization Hypothesis is supported by convergent

behavioral evidence, as the hypothesis o�ers an account of both the relative accuracy of perceptual

inference as well as the particular pattern of errors seen in cognitive inference. I’ll then say something

about how the hypothesis �ts with the exceptions to the general rule – instances of perceptual

inference slower and of cognitive inference that are faster.

First consider the relative accuracy of perception over cognition. The Perceptual Amortization

Hypothesis claims that perception’s Evidence Informed Proposal Distributions (EIPDs) concentrate

probability mass more e�ectively around the most likely hypotheses than do those in cognition. When

computational resources are limited relative to the size of an inference problem, sampling from a

distribution that places more probability mass over the best hypotheses will tend to increase accuracy.

The details of this explanation are just the �ip side of the account of speed o�ered in Section III. If we

imagine that we have a �xed set of samples to draw, then drawing from a more concentrated proposal

distribution leads to better accuracy in expectation (see Figure 5).77

77 Assuming, for simplicity, that the EIPDs are unbiased.
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Figure 5. If, for example, both systems have a computational budget that allows them to evaluate four

hypotheses, then the system drawing from a more concentrated proposal distribution will deliver higher

expected accuracy (maybe within an error of .03 rather than .25).

[Figure 5]

The current view can also explain the particular pattern of errors we see in cognitive inference.

In the last section I used probability matching as an example of the response patterns seen in canonical

cases of cognitive inference. I’ll use it as an example here again, but it’s important to recognize that the

behavior is actually more general. The true explanans is a pattern of responses that is signi�cantly more

stochastic than is optimal, but with higher response frequencies associated with higher probability

hypotheses.

Probability matching and nearby behaviors are just what you’d expect to see if cognitive

inferences involved drawing hypotheses from relatively weak proposal distributions. Drawing from a

weak proposal distribution, relative to problem size, means that many hypotheses have to be tested

before �nding good ones. Since the good hypotheses are preferred over the bad hypotheses in decisions,

they are more likely to be returned. In many cases however, the best hypothesis that is found will still

have relatively low probability on the posterior, and so low probability hypotheses will still be attested

subjects’ responses.
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To make this all concrete, imagine the limiting case of not using any evidence to inform the

proposal distribution. As we noted earlier, in this case the best you can do is often just to sample from

the prior and accept or reject hypotheses depending on whether they are consistent with evidence

(‘rejection sampling’, see page 11). In the limit, samples from this algorithm converge to the posterior

distribution. When the observed evidence is surprising (i.e. low absolute probability) however, very

many samples have to be drawn from the prior in order to get one that is consistent with the evidence.

Since for real world inference most evidence is surprising, a lot of computational work will have to be

done to get even a single accepted sample. If participants in experiments such as the category learning

studies were doing rejection sampling, then they might only have the computational resources to

deliver a single sample that passes this demanding check. Decisions made over this one sample

approximation to the posterior will deliver exact probability matching behavior.

This particular explanation of probability matching-like behavior is probably too neat for a

couple of reasons. For one, I don’t think it’s likely that cognition is actually rejection sampling – the

method is just far too ine�cient. For another, we shouldn’t be too con�dent that people are exactly

probability matching. Many experiments involve �tting a prior to subjects’ responses, which can make

it di�cult to diagnose exact probability matching from nearby behaviors. The experiments that have

looked at cognitive inference with independent estimates of the priors have found evidence for both

exact probability matching (Denison et al. 2013) and in other cases for response strategies that are

slightly lower variance (although still far from optimal, e.g. Mozer et al. 2008).78

While rejection sampling account of probability matching behavior isn’t exactly right, it

illustrates a more general account of the more general behavior. When a sampling-based inference

algorithm draws samples from a more di�use proposal distribution, more work will have to be done in

order to �nd hypotheses that score reasonably well on the posterior. When the computational budget

is limited, the system will not reliably �nd the best hypotheses. However, because it can recognize

better hypotheses when they are sampled, the system will be more likely to deliver better hypotheses

than weaker ones. This is just the behavior we see in canonical cases of cognitive inference.

78 Mozer et al. show that in the particular case of prediction about familiar topics subjects’ behavior is roughly what you’d
expect if they were drawing two samples from the posterior and making a decision on that basis.
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The �nal bit of behavioral evidence I want to discuss here are the exceptions to the rule – cases

of slow(er) perceptual inference and fast(er) cognitive inference. The amortization hypothesis suggests

that there will be instances of slower perceptual inference when our EIPDs are frustrated by a lack of

cues in the image or adversarial arrangements of cues. We’ll see a possible example of this in the next

section. The hypothesis also suggests that there may be special instances of cognition where cognition

has extensive exposure to a circumscribed domain and so becomes faster and more accurate for much

the same reasons that typical perception is fast and accurate. Cases of expertise may be like this. People

who have extensive exposure to circumscribed domains, from chess to medical diagnosis, tend to be

able to �nd better solutions more quickly than novices who may know the same information (e.g. the

rules of chess) but lack the experience. Such speed and accuracy may be due to the mind's ability to

learn concentrated EIPDs with extensive exposure to a cognitive domain. In this way, amortization can

o�er a uni�ed account of both the Speed Difference between typical perception and cognition and the

exceptional cases of faster cognition and slower perception.79

VI. Neural Signatures of Amortization

In this section I argue that the Perceptual Amortization Hypothesis draws convergent evidence

from recent �ndings in computational neuroscience.

Computational neuroscience aims to develop quantitative models of what di�erent brain

areas are doing and how that contributes to intelligent behavior. One source of evidence that a

particular model captures some aspect of the representations and computations going on in the brain is

if the model can predict biological neural activity when the brain is performing a similar task to the

model, say, processing a visual stimulus. When it comes to the computational neuroscience of vision,

the most successful models – as judged by this metric – are Deep Convolutional Neural Networks

(DCNNs). A neural network is a set of nodes and directed edges each of which take on real numbers,

called activations for the nodes and weights for the edges. The activation of a given node is a function of

the activations of the nodes leading into it, multiplied by the weights of those edges, and passed

79 For a research program showing further evidence of amortization in cognition, see Dasgupta et al. (2020).
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through an ‘activation function’. A network is said to be ‘deep’ if it has many layers of nodes and

‘convolutional’ if the weights satisfy some further constraints that intuitively require di�erent nodes in

the same layer to compute the same function.

DNNs, convolutional and otherwise, can be ‘trained’ to compute interesting functions. We

might train a DNN to do image classi�cation by �rst encoding an image into the activations at the �rst

layer, passing those activations through the network to get a readout – a pattern of activations in the

�nal layer that we can treat as a classi�cation of the object in the image – and then tweaking the weights

in the network if the output di�ers from what we wanted. DNNs trained in roughly this way can learn

very complex and useful functions. They might, for example, learn a series of visual features which are

diagnostic of category membership. To do this, they generally require lots of data (e.g. millions of

images) on the same or very similar problems (e.g. classifying the objects in those images).

As I mentioned, DCNNs have proved the best models to date of the online computations

involved in perception, at least as measured by the capacity to predict neural data. Arti�cial neurons in

DCNNs trained to perform visual tasks like object classi�cation can be mapped to populations of

biological neurons (e.g. in the visual cortex of non-human primates), such that the activations of the

arti�cial neurons in response to images predict the activations of the corresponding biological neurons

when the animal is shown the same image. This neural predictivity can be seen both quantitatively –

explaining about 50% of the variance on average – and qualitatively – in the sense that the models

spontaneously reproduce aspects of visual processing like the visual hierarchy, with earlier layers of the

model best predicting activation in anatomically earlier visual areas and later layers best predicting later

visual areas (Yamins et al. 2014, Güçlü & van Gerven 2015, Khaligh-Razavi & Kriegeskorte 2014). The

resulting predictions generalize far outside the training images and even outside of naturalistic input.

Stimuli that are engineered to excite arti�cial neurons outside of their typical range produce atypically

large activations in the corresponding biological neurons (Bashivan et al. 2019, see Figure 4b for

example features). This neural predictivity appears to be a byproduct of the model being trained to

perform the visual task – models that do better at classi�cation accuracy are also better neural

predictors (Yamins & Dicarlo 2016). So far this line of work has focused on vision, but there are early
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signs that some of these results may generalize to other modalities. DNNs trained to localize sounds

predict neural activity in auditory cortex (Kell et al. 2018).

While results like these are impressive, the current generation of DNNs also leave a lot to be

desired as models of human perception. For one, current DCNNs exhibit striking behavioral

di�erences with people, most famously showing susceptibility to ‘adversarial examples’ (images that the

network con�dently classi�es incorrectly but that would never fool a human being) and exhibiting

biases to learn classi�cations on the basis of texture and hyper-local geometry, rather than the global

shape bias characteristic of human classi�cation (See e.g. Firestone 2020 for a theoretical discussion,

and Bowers et al. 2023 for catalog of these e�ects).

Another shortcoming of the current models has to do with neural predictivity itself. The

current models that are so successful at neural prediction for most images fail dramatically for a subset

of images that are classi�ed more slowly by primate vision (Kar et al. 2019).

To unpack this a little: of the images that primate vision classi�es correctly, some are solved

more slowly than others. This slower solution time shows up both in the reaction times of monkeys

performing the classi�cation task and in the time it takes for the image to be decodable from the

relevant areas of visual cortex.80 Images can be binned according to this ‘solution time.’ Most images

are fast resolving, in the sense the object category can be decoded in around 100ms, while other images

are slower resolving, decodable only after 150, 200, or 250ms. The neural predictivity of DCNN

models is impressively high for the fast resolving images, but rapidly falls o� for slower resolving

images, and trending toward chance performance for the slowest (see Figure 6).

By the same logic that was used to argue that DCNNs really do capture something about the

representations and computations used in temporally early vision, the representations and

computations that are involved in temporally later vision seem to be missing from these models.

80 This is a restricted, linear decoding, rather than a �exible non-linear decoding. All of the decoding and mapping results
mentioned in this section use linear mappings.
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Figure 6.Neural predictivity of DNNmodels trends rapidly downwards for slower resolving images

(Left). OST is ‘object solution time,’ the time for the image classification label to be decodable from the

relevant areas of macaque visual cortex. Adding layers or recurrence to DNNs delivers better predictivity,

but nothing like the earlier successes (Right) (Graphs from Kar et al. 2019).

[Figure 6]

A natural thought is that what’s missing from current DCNNs is recurrent processing. Indeed,

we know based on pharmacological interventions that recurrent processing in the brain is a big part of

how these slow resolving images get resolved (Kar et al. 2021). Adding recurrence to DCNN models

helps a little, but intriguingly, doesn’t remotely return neural predictivity to the highs seen for

temporally early vision (see Figure 6). This suggests that what recurrence is doing in biological vision is

di�erent from what it is doing in DCNN models. The upshot of this is that while DCNN models

appear to capture something real and important about temporally early perceptual processing, they

appear to be much less good models of what happens after the �rst 100ms or so.

I’d like to explain these �ndings by way of two theses that tie them to what we’ve been

discussing. The �rst, which I think is uncontroversial, is that DCNNs of this kind are realizers of

Experience-Informed Proposal Distributions. This means that evidence of DCNN-like computations

in temporally early vision is evidence of EIPD-implementing computations in early vision, and so
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convergent evidence for the amortization hypothesis. The second thesis – which goes beyond the

current argument – is that the �ts to neural data drop-o� for slower resolving images because these are

images where the original DCNN-implemented proposal o�ers a less good initial interpretation of the

scene, requiring more explicitly inferential procedures of hypothesis checking to take over. This results

in both longer processing times (slow perception) and in representations and computations that di�er

from those that go on in a DCNN.

Start with the �rst thesis, that DCNNs are realizers of EIPDs. This should be clear from the

training regime of DCNNs and related networks.81 In order to realize an EIPD a system must use

information detectable in the image to concentrate probability mass over more likely hypotheses. The

features it uses to do so should be acquired by way of extensive exposure to the domain.82 This is just

what these networks do. At the start of training, when the weights of the network have been randomly

initialized, the network outputs random blends of activation patterns in response to input images.

These outputs can be, and often are, normalized and treated as relatively �at probability distributions.

By vast numbers of exposures to the domain, combined with their update procedure, the networks

learn to detect features in the image that are diagnostic of various hypotheses. The features they learn

are well understood, if odd, amalgamations of textures and local geometry (see Figure 7). Formally,

these are discriminative models – they learn to approximate P(H|E) or a decision over it. This

corresponds to learning to concentrate probability mass over more likely hypotheses.83 In this way,

trained discriminative DNNs are realizers of EIPDs.

Note that this is not the controversial claim that these systems are just memorizing the training

data (e.g. Marcus 2020). Everything I’ve said is consistent with DNNs learning features that generalize

far outside of their training distribution. Future iterations of these models may even move in the

direction of learning more interpretable features (although it’s not clear that would make them better

83 Assuming the posterior is more peaked than the prior; a safe assumption in this case. Whether DNNs are incentivized to
learn the posterior or the maximum of the posterior depends on technical details of their training. Cross entropy against a
delta distribution and L2 loss are proper scoring rules and incentivize learning the true P(H|E). L1 loss incentivises placing
all probability mass on the most likely hypothesis, argmaxP(H|E).

82 This could correspond to exposure over ontogenetic or phylogenetic time; I won’t commit one way or the other.

81 In particular, of ‘discriminative’ networks (more on this below).
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models of temporally early vision – there is some evidence that textures and hyper-local geometry are

just the features that temporally early human vision uses, e.g. Evans & Treisman 200584).

Figure 7.Visualizations of the features at several layers of a DCNN. These features are optimized for

discriminating between images of objects of various categories (Olah et al. 2017).

[Figure 7]

So discriminative DNNs are realizers of EIPDs. Evidence of computational similarity between

temporally early vision and DCNNs then is evidence that temporally early vision involves EIPDs. This

is convergent neural evidence for the Perceptual Amortization Hypothesis.

What about the drop o� in �ts to neural data? Well, there are many things that could be

responsible for this, but I want to explore one possibility because it’s related to what we’ve been

discussing here. This is that slow resolving images are slow because they are images where the original

proposal from the EIPD is wide of the mark, perhaps due to degenerate or adversarial cues in the

image. In these cases, later inferential processes of a di�erent nature kick in. These involve making

changes to the hypotheses originally prioritized by the EIPDs and explicitly checking these new

hypotheses against the incoming data. The result is longer processing times, because more hypotheses

have to be checked, and greater dissimilarity between biological neural processes and DCNNs ,

84 … the features we are referring to need not be simple hardwired physical features but may be learned features of
intermediate complexity (cf. Ullman, Vidal-Naquet, & Sali, 2002) that characterize a target category (e.g., beaks or open
wings for birds, smooth shapes and metallic textures for vehicles). (Evans & Treisman 2004, p.1477)
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because of the change in both representations and computations. This dissimilarity increases the

longer these late stage processes run for.

Concretely, what these late stage inferential processes might involve is making adjustments to

the 3D scene proposed by the EIPD and then comparing the image predicted by the new hypothesis to

incoming data in order to score that hypothesis. This can be done repeatedly to test novel 3D scene

representations in a sampling procedure not unlike what we saw in cognition in Section V. For

example, the EIPD might propose that vision is looking at a panther in a tree in such-and-such a

position. This hypothesis about the 3D scene can be used to generate a prediction – the 2D image that

such a scene is likely to produce – which can be compared to the observed image to assess the

hypothesis’ likelihood. When the predictions stop improving or some other criterion is met, vision

settles on that hypothesis.85

While admittedly speculative, there are reasons to take this idea seriously. For one, these slow

resolving images are images that primate vision gets right, but that DCNN models get wrong.

Whatever these unmodeled processes are, they seem to be delivering improved classi�cation

performance. Sampling-based inference �ts the bill.86 Second, there’s ample neural evidence that

prediction plays a role in online perception – evidence that’s usually marshaled to argue for predictive

coding views (see Howhy 2013 for review). The scoring of sampled hypotheses involves making

predictions about the incoming sensory data in just this way. Third, there is evidence that in cases

where perception oscillates between di�erent percepts because neither is strongly preferred (an extreme

case of slowly resolving percepts) these temporal dynamics are well modeled by sampling-based

inference (e.g. Gershman et al. 2012). Finally, when DCNNs are trained to amortize inference in a

model capable of sampling-based inference, the resulting networks deliver better �ts to neural data than

do networks which are trained on classi�cation tasks alone, without the support of a sampling-based

model (Yildirim et al. 2020). Each of these give us some reason to believe that temporally late visual

processing is implementing a distinct, sampling and prediction-based approach to inference, compared

to the discriminative procedures of temporally early vision.

86 See e.g. Kulkarni et al. 2015 for an implementation of this idea and comparison to neural baseline.

85 Or, in some arti�cial cases like binocular rivalry, cycles forever.
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If this second thesis is right, it helps to unify some distinct traditions in vision science. Some

traditions emphasize discriminative models, including both DCNNs and the feature detection models

of classic vision science (see Figure 4). Others emphasize ‘generative’ models, or those that can generate

images in virtue of representing a joint probability over hypotheses and evidence, P(H,E). These

include many predictive coding models, bayesian models more generally, and certain other neural

networks. The current view is one on which both of these traditions get something deeply right about

perception. Explaining both the speed as well as the dynamics and robustness of vision may require

both a discriminative and a generative model working in tandem.

To sum up then, the success of CNNs at predicting neural activity for temporally early vision

suggests that primate vision has access to a function realizing strong EIPDs, o�ering convergent

evidence for the Perceptual Amortization Hypothesis. That a particular model should deliver impressive

neural �ts to fast resolving images and progressively worse �ts to slower resolving images is mysterious

until we imagine that the model in question is a model only of the �rst part of vision – the proposal

distribution. Imagining how EIPDs �t in with the rest of visual inference helps us make sense of these

otherwise puzzling �ndings.

VII. Conclusion

We started this paper with the question ‘why is seeing fast and thinking slow?’. I’ve argued that

the reason has to do with the way in which perceptual problems are mutually informative about one

another’s solutions, allowing perception to leverage large amounts of prior exposure to the domain to

anticipate the results of computationally challenging inference. This allows the costs of inference to be

prepaid, signi�cantly reducing the time that must be spent solving any individual instance. In contrast

to perception, cognitive inference problems are much more diverse. People have much less exposure to

the full breadth of cognitive inferences, relative to that diversity. This limits the role that amortizing

inference can play in typical cognition (although in the special cases where people do have extensive

exposure to a circumscribed domain, the strategy can be leveraged to some degree). I showed how this

Perceptual Amortization Hypothesis could explain the speed of perception, as well as a raft of other data,
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including perception’s relative accuracy, the particular pattern of errors seen in cognitive inference, and

otherwise puzzling �ndings in computational neuroscience. I’ll end here with some thoughts on how

this �ts into larger discussions about perception and cognition and the interplay between AI and

cognitive architecture.

One set of consequences has to do with the use of speed for identifying ambiguous mental

processes as perception or cognition. The current investigation brings with it both good news and bad

news for these arguments. The good news is that typical cases of perception really do appear to be

faster than typical cases of cognition and we have a computational framework that suggests that this

pattern is non-accidental and likely to carry over to as of yet unstudied instances of both.87 The bad

news is that the theory predicts that some atypical cases of cognition may be fast for much the same

reason that perception is. Cognitive inference will be fast when the inference is relatively circumscribed

and people have extensive experience performing it. Unfortunately, that set plausibly includes many of

the cases where speed has been invoked to argue that a given process is perceptual. This includes

arguments for concepts, con�dences, and demographic features in perception. These inferences may

ultimately turn out to be perceptual, but showing that this is the case requires controlling for expert

cognition. We may need new ideas about how to do this.88

Another set of consequences has to do with the interplay of AI and cognitive architecture. If

the current view is right, then there are deep computational di�erences between the kinds of inferential

operations that happen quickly in the human mind and those that take more time. The speed of

perception is explained by the fact that relatively more of what goes on in perception is done by these

fast operations. The slower processes still play a role, even in perception, in allowing for recovery when

experience-informed proposal distributions are frustrated by degraded or adversarial cues in an image.

Relatively more of the work in cognition is done by these slow processes. That has some downsides –

cognition is slow, relatively inaccurate, and limited to small problems – but also some upsides –

cognition can engage in sustained reasoning in domains with which it has extremely little exposure. AI

of late has seen unprecedented progress across a wide variety of perceptual and cognitive tasks, from

88 We might start by �rst assessing whether expert cognition can ever be as fast as perception.

87 We can also add tests for accuracy to these methods as a related diagnostic feature.
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object classi�cation, to game play, to delivering �uent prose. Debatably, however, a lot of this success

has been limited to things that people do quickly. If there is a deep computational di�erence between

the things that we do quickly and those that take more time, then we should be cautious about

extrapolating progress in AI on the former into the future. As we look to automate more of the tasks

that people solve slowly, we may need a broader toolkit.
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Chapter 3: An Architecture For Central Cognition

Abstract: People are able to navigate a world of tremendous complexity. We keep track of many things that

touch our lives, from the aesthetic preferences of a partner to the evidence for scienti�c theories. When we see

something on the news we can recognize consequences for disparate parts of our lives, from our �nancial

decisions to the well being of a close friend. We put that information to use in plans that succeed often enough

to shape the world around us. How do we do this? One of the chief challenges in answering this is taming the

massive computational costs that arise as we approach the problem. (The challenge is su�ciently daunting that

many thinkers have concluded doing so is impossible.) This paper attempts to sketch an answer to this question.

I �rst discuss the computational costs that arise in the course of straightforward attempts to reproduce human

cognition and the impossibility arguments that appreciation of those costs have inspired. I argue that certain

methods in contemporary AI get us part of the way towards a solution, overcoming key barriers. These methods

represent an important part of an account of human cognition, but fall short in key ways. I present one way that

these methods could be used as part of a larger system capable of more fully addressing the challenge.89

89 Many thanks to EJ Green, Josh Tenenbaum, Jack Spencer, Alex Byrne, Ned Block, and Laurie Paul for comments on
earlier drafts of this paper, and to Lionel Wong, Alex Lew, and Tan Zhi-Xuan for extensive discussion.
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I. Introduction: An E�ective, E�cient Procedure

Imagine you’re trying to �gure out whether Bob is in his o�ce. How do you do this? Epistemologists

have a normative answer to this question. For a Bayesian, you’d start with your prior degree of belief and then

update on any evidence that bears on the proposition – maybe the fact that it’s a weekday or that the university

is in session. The result is a posterior that represents your all-things-considered belief that Bob is in his o�ce. On

non-Bayesian views, the right norms might be consistency checking new beliefs against old beliefs to deliver the

most conservative possible update, or drawing an inference to the best explanation.90 One thing that all of these

have in common is that they are holistic. The posterior, the best explanation, and the most conservative update

are all sensitive to what else the reasoner believes. This sensitivity is very �ne-grained. A few beliefs can radically

recon�gure the space of what is relevant to think about. Right now, my beliefs about what is going on in

Ukraine is not relevant to whether I think Bob is in his o�ce. But if I believe, or found new evidence, that Bob

had been recruited by the CIA as their slavic culture expert, then what is relevant to think about when �xing my

beliefs could turn on a dime. This kind of holism makes normative operations for �xing belief extremely

computationally demanding. The number of di�erent possibilities that need to be considered is enormous –

encompassing all possible ways the world could be that would make it more or less likely that Bob is in his o�ce.

The same applies if we want to �nd the best explanation or the most conservative belief update. Under very weak

assumptions about what it takes to consider a possibility from a computational perspective, these operations

demands astronomically many computational steps (see Brooke-Wilson 2023). The same applies for normative

operations for planning and decision making.

A natural thought is that we don’t do this, we consider just a few relevant possibilities and connections

at any given point. Since we don’t consider all the possibilities, the computational costs of doing so are

irrelevant. But how do we determine what is relevant to consider on a given occasion? Since it is the above

holistic and context-sensitive process that determines what is relevant, computing relevance threatens to be

computationally infeasible as well. What’s more, people are reasonably good at determining relevance. Good

enough that we get by in a world of tremendous complexity. We can form reasonable beliefs about the things

that a�ect our lives, from the whereabouts of a colleague to the plausibility of scienti�c hypotheses. We form

plans to navigate an open ended world, from running errands to managing an investigation. Matching our

90 If this is di�erent from Bayesian updating, cf. debates in the philosophy of science (Van Fraasen 1989, Lipton 2004,
Weisberg 2009, Henderson 2014)
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performance in these areas is the holy grail of the �eld of arti�cial intelligence. What computable,

computationally tractable process underwrites our ability to do this?

This paper examines the computational challenge the mind faces in solving such open world problems,

why tools from contemporary AI get us part of the way (but not all of the way) there, and lays out a possible

route way forward. Section 2 explores why approximating normative processes of belief �xation is

computationally demanding and presents classic arguments that it is impossible to do within a computational

framework. Section 3 draws on methods in contemporary AI to o�er a counterexample to these impossibility

arguments and some positive evidence that part of the problem can be solved. Section 4 presents some evidence

that these same methods get us only part of the way toward an e�cient procedure; missing critical properties of

normative operations that human cognition possesses. Section 5 presents a positive view of human domain

general cognition, drawing on a broader set of resources from AI. On this view, the mind uses certain processes

to e�ciently construct small models, tailored to task demands, and others to approximate normative operations

in those models.

II. Intractability and the Computational Theory of Mind

In this section, I reconstruct classic arguments for the thesis that domain-general cognition incurs

astronomical computational costs, of the kind that should make us skeptical that such a thing could exist. There

is a weaker and a stronger version of this thesis. The weaker version holds only that exact domain general

cognition – realized by computing exact versions of normative operations like Bayesian inference over a large

body of beliefs – is computationally intractable. The more ambitious version of these arguments attempt to

show a stronger thesis, that even approximating these operations reasonably well is intractable. While I

ultimately reject the stronger thesis and the arguments for it, they give us a sense of why meeting the tractability

challenge is hard and what is needed to do it.

2.1 Computational Intractability of Domain General Cognition

To inquire whether domain general cognition is tractable, we need to lay some groundwork. As I’ll be

thinking about it, computational tractability applies to computational procedures. A computational procedure is

a series of �nitely many applications of a �nite set of mechanically speci�able operations, without recourse to
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anything outside of these operations.91 When a computational procedure involves too many operations to be

feasible, we say that that procedure is computationally intractable. There is some relativity built into this

de�nition (Feasible for whom? With what resources?), but many important classes of procedures require

genuinely astronomical numbers of operations when applied to real world sized problems, obviating this

relativity. If a procedure is intractable in this sense, it follows that the brain is not doing it. While there is

signi�cant uncertainty about the computational resources of the brain, it does not have astronomical resources.

Computational procedures can be used to solve computational problems. Computational problems are a set of

inputs, a set of outputs, a set of ordinal or metric structure over those outputs, and a mapping from inputs to a

given structure over outputs that de�nes how well the problem has been solved.92 A computational problem is

intractable when the most e�cient computational procedure for solving it is intractable.

Why should we think that the normative operations that have been proposed as theories of cognition

are intractable? It’s helpful to start here by considering the exact computation of normative operations for

reasoning and planning, before attempting to generalize the tractability concern to approximate versions of

these. Consider what’s necessary for the exact computation of, say, Bayesian inference. When I consider whether

Bob is in his o�ce, evaluating this proposition normatively to deliver my all-things-considered belief requires

considering the space of things that could have kept Bob at home today, could have caused him to come in and

then leave, reasons he might be traveling, etc. Evaluating one factor, like the possibility of him traveling, involves

considering numerous further questions: Does he have local or distant family? Is today a special occasion? How

often does he visit out-of-town friends? Is he attending a conference? Each question leads to more

considerations, creating a 'combinatorial explosion' of possibilities. The complexity is a result of the

interdependencies among beliefs and, at its limits, closely tracks the number of concepts the agent possess. The

more concepts an agent has, the more states of a�airs she can represent. The thoroughgoing holism of normative

operations means that each of these states of a�airs must be considered to determine whether it should be

updated in light of new information. The number of states of a�airs to be considered is an exponential function

of the number of logically independent concepts. If I am considering, for example, how the items in a box are

arranged, that number of possibilities is given by the number of objects and the number of atomic properties

(properties that do not entail one another, e.g. color, shape, location) that can be freely composed. Each addition

92 The metric or ordinal structure re�ects the fact that answers to computational problems are not always right or wrong,
but are often better or worse than one another. Better procedures are those that deliver better performance on a problem.

91 This last condition can be weakened in targeted ways, asking for example, what would be tractably computable if the
system had answers to particular kinds of intractable queries, say, by asking an oracle.
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of a new property or new object increases the number of possibilities exponentially. (If I start with one item

which has one of two shapes and one of two colors, there are 2^2 or 4 possibilities. If I add that it could have one

of two sizes, the number of possibilities is 2^3, or 8, and so on.) Under weak assumptions about the

computational cost of evaluating a possibility, the result is computational costs that scale exponentially with the

number of logically independent concepts (Consideration of space precludes a more thorough discussion here,

but see Brooke-Wilson 2023 for more detail). The end result are computational costs that are truly astronomical,

outnumbering even for toy cases of belief updating the number of particles in the observable universe. The same

concerns apply to normative operations for decision making. In order to know what I should do now, I need to

consider both how I take the world to be and the many ways my actions might a�ect it, entailing exponential

costs to make decisions exactly according to normative standards such as Expected Utility Decision Theory.

We’ll talk about approximation strategies for most of the rest of the paper, but it is worth noting that

many approximation strategies still face this problem. Take ‘satis�cing’, for example, the strategy of setting the

goal of �nding a solution that’s ‘good enough’ rather than the best one. Satis�cing was proposed by Herbert

Simon (1956), in early appreciation of how the challenge of solving seemingly intractable problems shaped the

mind. An agent that satis�ces eschews the goal of �nding the expected utility maximizing decision (or the best

possible explanation, or the most conservative belief update) and settles instead for any solution that delivers

some threshold of utility (explanatory virtues, conservatism, etc.). Abandoning the ambition of �nding the best

possible solutions to our cognitive problems is doubtless necessary to explain tractability, but besides naming a

necessary condition, satis�cing actually buys us very little. Assuming we’re not setting the bar for ‘good enough’

trivially low (in which case it would be hard to square with human performance in reasoning and planning)

solutions that are good enough are still going to be a negligible portion of the space of possible plans,

explanations, or updates. One can start to appreciate this by imagining sampling, at random, from the space of

possible plans – randomly composing actions and evaluating them for whether they accomplish various goals.

For non-trivial goals, one could sample in this way until the end of time and never �nd a plan that’s ‘good

enough’. The upshot of all this is that even once we’ve reconciled ourselves to only ever approximating

normative operations over large domains, it is far from obvious how to do that within a computational

framework, or even whether it can be done at all.

This challenge, often referred to as the ‘combinatorial explosion’, has been a central challenge for AI

since its inception. The failure to appreciate the severity of the problem is often seen as the reason for the

disconnect between the exuberance of early AI (many of the pioneers of the �eld made predictions about when
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human-level AI and other accomplishments would be achieved which in hindsight seem to have been wildly

optimistic) and the �eld’s subsequent disappointments. The infamous Lighthill report (1973), written by

mathematician James Lighthill, which highlighted the failure of AI research to live up to its promises and is

often considered a cause of a decade long cessation in funding for the �eld (the �rst ‘AI Winter’), reads,

[This report] single[s] out one rather general cause for the disappointments that have been experienced:

failure to recognise the implications of the combinatorial explosion. This is a general obstacle to the

construction of a self-organizing system on a large knowledge base…

The combinatorial explosion is more than just a practical problem for the �eld of AI. It’s been the basis for

skeptical arguments for some surprising conclusions. These include arguments that domain general cognition is

impossible, that human-level or ‘strong’ AI is impossible, and arguments that the computational theory of mind

– the view that mental processes are computational processes and the basis for our science of mind – must be

false.

Arguing for the �rst of these conclusions, that the mind must break down into parts dedicated to

processing only select kinds of information, Tooby & Cosmides (19940 write that ‘combinatorial explosion

paralyzes any system that is truly domain-general’ (91). This requires that the mind must be implemented via

distinct modules, dedicated to at best approximating normative operations over limited domains (one module

for our reasoning about other minds, another for our reasoning about physics, and so on). Carruthers (2007)

draws a similar conclusion, arguing that ‘…cognition must be organized into networks of distinct computational

systems, whose internal processes are appropriately frugal’ (53, emphasis in original).

Dreyfus (1972) turns the issues related to the combinatorial explosion into an argument against the

possibility of human-level AI. Interspersed with examples from the AI problems of the day and an attempt to

develop his own taxonomy of problems, Dreyfus writes,

[Many problems are] in principle reproducible [by computation] but in fact intractable. As the number

of elements increases, the number of transformations required grows exponentially with the number of

elements involved (205)
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[This] di�erence in degree between simple and complex systems turns out in practice, however, to be a

di�erence in kind – exponential growth becoming a serious problem… (207)

[As a result, certain] human forms of ‘information processing’ cannot be reproduced in any program.

(208)

If human-level AI is impossible, it follows that the computational theory of mind, which holds that the mind is a

machine, must also be false. Jerry Fodor, who made his career as a stalwart defender of the project of cognitive

science, ultimately came to believe that the inability of computational systems to deal with holistic and global

operations falsi�ed the computational theory of mind. In characteristically blunt prose, Fodor (2000) writes that

‘…the computational theory of mental processes doesn’t work for abductive inferences’ (41). Because of this, ‘…

sooner or later, we will all have to give up on the Turing story as a general account of how the mind works…’

(47, emphasis in original).

These are surprising conclusions. They include a very unfamiliar picture of a set of processes that

should be deeply familiar to us, the impossibility of the ambitions of a whole �eld, and the felicity of the

foundational assumption of our science of mind. Such conclusions require strong arguments. At minimum,

they require more than just appreciating the challenge of the combinatorial explosion, but some positive reasons

to believe that the challenge can’t be e�ectively overcome. Dreyfus and Fodor attempt to o�er such arguments

by establishing the impossibility of tractably computing relevance.

2.2 Relevance & The Impossibility of Approximation

So, why think that domain general operations can’t be approximated? Start with what it means for one

operation to approximate another. For present purposes, we’ll say that one operation approximates another if

the �rst has an input-output function that is close to that of the second according to some reasonable measure.

For example, one function might provide a reasonable approximation to another if the two agree for most

problem instances, or for most problem instances they’re likely to encounter, or if the outputs of the

approximating function are within a certain error of the approximated function. The relevant measure can also

be composition of these – for example, the quality of an approximation may be the average disagreement

between the two functions, weighted by the probability of encountering an input. We’re interested in whether

the global application of normative operations can be approximated in this sense.
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One way to attempt to approximate an operation that is rendered intractable by the size of its domain is

to focus computation on just those elements that make an outsized contribution to the result. This will be a

good strategy for approximation when instances are such that a few relevant entries largely determine the result.

Call problem instances that have this property sparse. As an example of a sparsity, consider multiplying two lists

of numbers, each number on the �rst list with each number of the second list, and then summing the result.

Performing this operation requires a number of computational steps roughly the size of the �rst list multiplied

by the size of the second. If, however, both lists contain mostly zeros, then we can save ourselves signi�cant

computational work by just leaving those zero entries out. Here we gain considerable computational savings by

taking advantage of the sparsity of these lists.

Many theorists have noted that a similar kind of sparsity plausibly applies to normative operations for

belief �xation and decision making. In most cases of planning or reasoning, only a small proportion of the things

I have beliefs about are relevant. When I’m considering whether Bob is likely to be in his o�ce, my beliefs about

events in Ukraine are generally not relevant – considering them or not makes no di�erence to my judgment. It’s

only in very special instances where such facts become relevant. A natural thought is that, if the mind could limit

the domain of its computation to just those considerations that are relevant on any given occasion, then this

could dramatically reduce the computational costs of approximating a global application of an operation –

perhaps enough to tame intractability.

Skeptics about uni�ed central cognition are well aware of this. Their case for intractability relies on

arguments that this apparent route to tractable approximation is illusory. Critically, they point out that what is

relevant to a given instance of a normative operation is highly context sensitive, in the sense that �ne-grained

di�erences in the problem instance entail very di�erent relevant domains. This makes it very hard to determine

what is relevant to a given problem instance. Fodor writes that ‘because of the context sensitivity of many

parameters of quotidian abductive inferences, there is typically no way to delimit a priori the considerations that

may be relevant to assessing them’ (Fodor 2000, p. 37). Dreyfus expresses a similar idea, writing that ‘there do

not seem to be any words or objects which are always relevant and always have the same signi�cance…’ (Dreyfus

1972, p. 201).

This yields the following argument –

Intractability of Relevance:
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P1. Tractable approximation of global operations requires tractable, general-purpose ways of

determining relevance

P2. The context sensitivity of relevance means that there are no tractable, general purpose ways of

determining relevance

C. Global operations are intractable to approximate.

Why accept Premise 2? The argument skeptics o�er is one of exclusion. They argue that none of the

broad classes of methods on o�er for determining relevance really solves the problem. A �rst divide is between

methods which are themselves inferential – computing the relevance of individual candidate consideration based

on their relationship to the background beliefs and the task at hand – and those that are heuristic – using some

property as a proxy for relevance. If the process that determines relevance is itself inferential, then that won’t

explain tractability – it just passes the buck on to a higher level, where the tractability of this higher inferential

process must be explained. On the other hand, if the process is heuristic, it is either impracticable or also secretly

passes the buck, either to a higher level heuristic or some inferential process that had merely been made

imperspicuous. This suggests that the problem is insoluble.

The �rst of these claims is straightforward enough. If it would be intractable to approximate inference

over some large domain, it is intractable to inferentially compute what is relevant – this would require just the

kind of normative operation over a massive domain that we were hoping to avoid. Things get interesting in

evaluating the second. Why believe that heuristic solutions to relevance are unavailable? Given that relevance

facts are acutely sensitive to background beliefs, such that we should not expect any small set of properties to be

highly indicative of relevance in all cases, the heuristic solution must either involve many heuristics picking up

on di�erent properties in di�erent circumstances, or a small set of highly general heuristics which are sensitive to

many di�erent properties. But if we take the �rst route and have many heuristics, how does the mind determine

which to apply on any given occasion? Fodor writes that making this determination would seem to be just

another abductive inference –

Perhaps, then, real cognition in real heads achieves an appearance of abductive success by local

approximations to global processes; and perhaps the problem of calculating these approximations is

solved heuristically, case by case. Such a proposal would be entirely compatible with the idea that

cognition is computation… The prima facie objection to this suggestion is that it is circular if the
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inferences that are required to �gure out which local heuristic to employ are themselves often

abductive. Which there’s every reason to think that they often are. (Fodor 2000, p. 42)

Determining which heuristic to apply by some inferential process really would just knock the

tractability can down the road. A natural follow on thought is that perhaps solves this problem heuristically as

well, creating a hierarchy of heuristics. Dreyfus points out that this threatens a regress (note that Dreyfus uses

the language of ‘situations’ and ‘contexts’ instead of heuristics, language reminiscent of the ‘frames’ of the

discussion in AI at the time, but the meaning is the same) –

This need for prior organization [to determine relevance] reappears in AI as the need for a hierarchy of

contexts in which a higher or broader context is used to determine the relevance and signi�cance of

elements in a narrower or lower context… But if each context can only be recognized in terms of features

selected as relevant and interpreted in terms of a broader context, the AI worker is faced with a regress of

contexts. (Dreyfus 1972, p. 200-201)

Just how powerful a hierarchy of heuristics can be depends on a lot of details of the problem. But Dreyfus is

right here to police against magical reasoning. We should not be satis�ed with merely invoking more heuristics to

determine which heuristics to apply to a given situation without some account of where and how the buck stops

– without this it’s all too easy to brush a deep problem under the rug of implementation details.

If marshaling many heuristics is infeasible, the alternative solution is to have a small set of highly general

heuristics. Fodor points out that there do not seem to be any good proposals for what a general purpose

heuristic guide to relevance might look like. Even highly general heuristics like, ‘if I’m reasoning about things in

Cambridge, only consider things in Cambridge’ simultaneously rule out to many things (Bob’s connection to

Ukraine, if I believe those exist) and let’s in too many (considering everything else in Cambridge still entails a

wildly intractable problem). One possibility that has been seriously o�ered is to attempt to defer relevance to

prior learning. This is the ‘Sleeping Dogs’ strategy, proposed by AI and robotics researcher Drew McDermott.

The thought is that the mind might determine relevance by deferring to the past. The strategy recommends that

we ‘consider those things that were relevant the last time you faced a similar problem and nothing else.’ But this

proposal faces a serious problem. There are many natural, true descriptions of events in your past, each of which
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groups di�erent past events with the current problem instance. How do you know under which description to

group past and present? Fodor writes,

‘Just do what you did last time.’ But what did I do last time? Was it that I tiptoed past a sleeping dog?

Or was it that I tiptoed past a sleeping brown dog? Or that I tiptoed past a sleeping canine pet of Farmer

Jones’s? Or that I tiptoed past a creature that Farmer Jones had thoughtfully sedated in order to enable

me to tiptoe safely past it? It could well be that these are all descriptions that I think are true of what

happened last time. So, the question I’m faced with is: Which of these descriptions is relevant to

deciding what I ought to do this time? (Fodor 1987, p. 119)

The problem then is that the description under which you would like to group past events and present

circumstances are those descriptions that determine an events relevance pro�le. Depending on one’s background

beliefs, it may be relevant that your interaction was with a dog, Farmer Jones’s dog, this dog, or a particular kind

of dog. But determining which descriptions are relevant to relevance would seem to be just the problem of

determining relevance in a new guise!

The upshot of all of this is that it is hard to see how the mind might tractably solve the relevance

problem. Proposed solutions seem to just pass the buck along. Skeptics conclude on this basis that relevance

cannot be tractably computed, opening the gates to many revisionary theses about how minds work and what is

possible for machines. In the next section, we’ll look at what is wrong with these arguments and how relevance

might, after all, be tractably computable.

III. Relevance Function

So far we’ve seen an argument that approximating global operations is intractable. Essential to the

argument was the premise that relevance could not be tractably computed (that is, there could be no tractable

‘relevance function’). In this section, I draw on a class of contemporary AI systems, Large Language Models, to

make the case that tractable relevance functions are indeed possible. If this is right, then the above intractability

argument is unsound and tractable relevance functions may well be a resource that an account of cognition can

appeal to.

Start with some terms. Neural networks are sets of nodes and weights that propagate activations to

perform computations in a way loosely analogous to the way the brain works (cf. LeCun et al. 2015). A Large
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LanguageModel (LLMs) is a neural network that has been trained on vast amounts of text (generally hundreds

of billions or trillions of words) to perform ‘next word prediction,’ or predicting the next word on the basis of

those that came before it.93 Training is done using the goal of ‘masked prediction’. This means that the model is

presented with a string of words drawn from the internet with the �nal word hidden from the model or

‘masked’. The model is then tasked with predicting the masked word based on those that it has seen. This

prediction is compared to the actual word appearing in the text and the model updated based on the di�erence

between its prediction and the observed word. For example, a model that saw the words ‘the students opened

their ___’ might generate a range of guesses from ‘books’ to ‘laptops’, ‘exams’, or ‘minds’. If the word that

actually appeared is ‘laptops’ then the model is updated to be more likely to produce that completion in similar

contexts in the future.

Next Word Prediction:

Lopardo (2019)

Models trained in this way learn to generate plausible sounding text for many di�erent contexts. Feed

them some input text and they’ll complete it in a reasonable way.94 This makes LLMs extremely general in their

applications. Models that are good at next word prediction can be channeled to solve many other tasks that can

be cast as next word prediction problems in the right linguistic context. Question answering is one example –

often, the most plausible text following a question, like ‘what is the capital of France’, will be the answer to that

question, ‘Paris’, so question answering can be reduced to an instance of next word prediction. Similarly for

machine translation. Feeding an LLM a set of pairs of sentences in a base and target language puts the model in

the linguistic context of translation. If the model is then fed a new sentence in the base language, the model will

often complete the passage with a translation of that sentence into the target language.

94 Especially when steered by further interventions that we won’t get into. See Ziegler et al. (2019) & Bubeck et al. (2023)
for further details.

93 Some models also take into account the words on either side of a missing word. This distinction won’t be important here.
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Machine Translation:

1a. The quick brown fox jumps over the lazy dog.

1.b. Der schnelle braune Fuchs springt über den faulen Hund.

2a. Tom eagerly packed his suitcase for the trip ahead.

2b. _____

LLMs have shown themselves to be capable of drawing simple inferences from text, telling jokes, and

composing �ctional stories to various speci�cations, among many other tasks. The success of models like this

has important implications throughout AI and beyond. What’s interesting for our purposes is these models’s

capacity for relevance. Consider the following ‘natural language abduction task’. Here, the model is fed two

observations with a non-obvious connection between them, for example, ‘It was a gorgeous day outside’, and

‘she asked her neighbor for a jump-start’. The model’s task is to provide a hypothesis that connects the

observations to one another, e.g. ‘Mary decided to drive to the beach, but her car would not start due to a dead

battery’ (Bhagavatula et al. 2020). Success at this task requires drawing on concepts not available in the

observations – in this case, drawing on concepts that could tie the gorgeous day to the need for a jump-start.

This makes determining relevance a subtask of this task. Successful performance demonstrates a capacity for

relevance.

Natural Language Abduction Task:

Obs1: It was a gorgeous day outside.

Obs2: She asked her neighbor for a jump-start.

Hyp: ___

(Mary decided to drive to the beach, but her car would not start due to a dead battery.)

LLMs can perform this task reasonably well. The best models tested about 80% of the time, as judged

by human raters (Allen Institute Leaderboard).95 The models that have so far been tested are older models (12B

parameters), and newer models are very likely to match human performance on this task.96 This suggests that

96 As judged by inter-rater agreement human performance on this task is about 94%.

95 Allen Institute for AI https://leaderboard.allenai.org/.
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some LLMs are capable of e�ciently computing the kind of relevance that’s needed to do well on this task. And

this kind of relevance shares much with the kind of relevance that is at issue in the arguments above: The

concepts aren’t mentioned in the task description but must be brought in by the model; in principle the

concepts can come from anywhere provided enough creativity to make the story �t; and the de�nition of

relevance depends on a �ne-grained way on the observation statements and the plausible causal connections

between them.97

A capacity for relevance is echoed in informal experience with these models. The models can ri� on just

about anything. They draw connections between arbitrary domains and concepts. At times they’ll make subtle

reasoning errors or blatantly contradict themselves, but they are always on topic – bringing in things that are

either relevant or plausibly relevant. Ask a good LLM ‘what are some ways that the war in Ukraine could impact

whether an MIT philosophy professor is in his o�ce?’ and it’ll produce a strong list of candidate possibilities,

including everything from personal involvement in the con�ict to campus disruptions due to protest. Tell it

you’ve ruled out the initial possibilities and they’ll take this into account, generating a whole new set of relevant

considerations. (Anecdotally, people tend to run out of steam before generating as many relevant possibilities as

a capable LLM – I encourage the reader to try for themself before looking at the LLM generated answers in

Figure 1.) The models are also context sensitive in many of the ways that Fodor and Dreyfus emphasize. Add

details to the prompt – like that the professor has been a lifelong paci�st, or simply mention that it’s Noam

Chomsky – and these details change the relevant candidate possibilities that are o�ered. The models can even

generate reasonably plausible rankings of the probabilities attached to these possibilities (See Figure 1).98

98 Note that throughout this paper I will use GPT-4 to illustrate various ‘successes of LLMs’. It should be noted that GPT-4
is a very particular LLM, trained in a particular way (using additional training generated speci�cally to support reasoning
abilities and from human feedback). Empirically, GPT-4 performs well on many tasks where other LLMs �ounder. As such,
these examples should be taken as existence proofs about what some LLMs can do, rather than as evidence for claims about
what typical LLMs can do.

97 There are, of course, other ways in which the task might di�er from the kind of relevance at issue above – for example, if
the problem is very under-constrained with just two observations, and this may make coming up with just one or a few
relevant concepts to establish a single causal link is too easy a relevance problem to be a good proxy for the capacity to
generate relevant considerations in the wild. That said, when it comes to relevance, having more constraints means more to
go on (LLMs are known to do better when they have more text to constrain their generations), so adding more constraints
might make the problem easier.
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Figure 1: Several examples of a language model asked to generate considerations relevant to our target problem,

delivering plausible connections between arbitrary concepts like whether an MIT philosophy professor is in their

o�ce and the events unfolding in Ukraine.99

Studies and examples like these suggest that, whatever their other weaknesses may be, LLMs are capable

of tractably computing relevance in many cases. Whether this is the right kind of relevance is a subtle question,

99 Generations from GPT-4 in June, 2023. (GPT-4 is a proprietary system behind an API and subject to periodic updates.
As such, the system's behavior may change over time.)
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but it’s enough to cast signi�cant doubt on the critical premises of the skeptical arguments we’ve been

examining. In particular, it allows us to reject premise 2 – LLMs represent a method for determining relevance

without regress and without passing the buck on to inference at a higher level.

Where did the reasoning in defense of Premise 2 go wrong then? The answer is instructive. LLMs

represent a variant of the ‘Sleeping Dogs’ heuristic. Recall that sleeping dogs heuristic says, ‘consider as relevant

anything that was relevant last time you were in a similar situation’. This is hard to apply in practice because

there are many true descriptions of the things you’ve done previously, and determining which things under

which description should be treated as guides to relevance seems to require nothing short of inference about

which things are relevant and why. Skeptics like Fodor and Dreyfus were right to have these concerns. What they

overlooked is that the hard work of determining which descriptions are guides to relevance can also be o�oaded

to learning, in addition to the actual considerations associated with events that fall under those descriptions.

Provided there is enough data and time to learn from it, a system can learn these descriptions or similarities by

starting with a very large set of possible descriptions and then making small, soft updates that lead over time to

strong connections between certain classes of events and concepts.100 Cast in the language of the discussion

above, the basic strategy here is to start o� relatively indi�erent between a large set of possible descriptions which

might be proxies for relevance pro�les – relatively indi�erent, that is, between whether what is relevant is to let

sleeping dogs lie, let farmer Jones’s sleeping dogs lie, etc. – and then make small updates in response to

experience. If the fact that it was farmer Jones’s dogs in particular turns out to be important, that is likely to

come out in many experiences with sleeping dogs.101 A large body of data and signi�cant amount of training are

enough to o�oad relevance from reasoning to learning in this way. And once learned, a relevance function of

this kind can be run cheaply. Provided various conditions are met enough o�ine learning can compensate for a

lot of online reasoning (see Chapter 2 of this dissertation for more discussion).

By learning a tractable, general purpose relevance function, LLMs represent an existence proof that

undermines intractability arguments. There is, of course, room for new versions of relevance skepticism to

emerge. We do not yet have an existence proof that a system relying on LLM-like relevance function could do as

101 Note that since experiences with sleeping dogs can be both rare and costly if you make the wrong move, the hope is that
this general strategy applies to more abstract concepts and scenarios, allowing for a degree of ‘generalization’ (extending
what a system has learned to cases it hasn’t encountered before). Here again LLMs o�er reason for optimism – while their
training data is vast, the vastness of possible questions is greater. Their ability to answer so many questions strongly suggests
they learned some generalizable relevance knowledge.

100 Provided there are some means for preferring some predicates over others, least New Riddle type concerns prevent any
learning from happening at all. Clearly neural networks, people, and any other system that does in fact learn has some
means of preferring some predicates consistent with the data over others.
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well as people do, only a counterexample to an argument that such a thing could not exist. The current

discussion could even point the way towards more subtle versions of skepticism. Our route to denying premise 2

required o�oading the work of online inference about relevance to prior learning over large amounts of data.

LLMs famously require a lot more linguistic data than people get – by one estimate about 10,000 times more

words than a typical 13 year old is exposed to (Wardstadt & Bowman 2022). What’s more, the particular kind of

data that LLMs consume – an internet’s worth of stories and discussion of various topics – could be uniquely

useful for learning relevance relations between concepts. A new form of skepticism could argue that if a system

can rely on exposure to this much data, then relevance can be computed tractably, but for more humanly

realistic amounts of data this is not possible.

Such a line of attack touches on important issues. Figuring out how (or whether) relevance could be

tractably computed subject to more of the constraints people face represents a fruitful line of inquiry. Relevant

questions here are things like – What kinds of data are available to the human learner to learn relevance? And

what is the minimum that’s needed for a machine to do so? Building a new skeptical case against uni�ed

cognition, strong AI, or the computational theory of mind would require answers to these questions. The case

would not be easy to make. One relevant consideration is that people have many sources of data that LLMs lack,

including large amounts of information from perception and from the ability to intervene on the world. Such

sources of data may more than compensate for the paltry linguistic data that people have in comparison to

LLMs. Another relevant consideration is that people may start out part of the way there when it comes to

learning relevance. Many developmental psychologists believe that infants start life with a range of concepts,

including concepts for agents, objects, cause and e�ect. When it comes to learning what is relevant to what,

starting out with an ontology like this is windfall. LLMs in contrast must learn everything de novo.

Considerations like these suggest that, while there is certainly room for a new version of the old skeptical

challenge, the case would really have to be made. As things stand, we have an existence proof that relevance can

be tractably computed, and no positive case that people’s minds couldn’t exploit a similar strategy to do so.

The upshot of this is that, for arguably the �rst time, we have a serious candidate method for the

tractable computation of relevance. This opens the door to serious investigation into the structure of cognition.

With a relevance function in hand, we can begin to imagine what an architecture for cognition might look like.

LLMs themselves represent a natural starting point here. If LLMs are capable of tractably computing relevance,

could they o�er a full account of human domain general cognition? In the next section, I argue that they could

not.

121



IV. Weaknesses of LLMs

We’ve seen that LLMs o�er an existence proof that relevance can be tractably computed. A natural

question then is whether LLMs, and nearby deep learning systems trained on di�erent kinds of data, o�er a full

account of domain-general cognition. I’ll call the hypothesis that they do the ‘Pure Deep Learning

Hypothesis’102. In this section, I’ll say why I think we should be dissatis�ed with this hypothesis. In doing this,

I’ll focus on LLMs as the most successful instances of deep learning systems (considered as candidate models of

human cognition), but I’ll focus on properties that LLMs share with other deep learning systems. The key

phenomena I’ll highlight are the patterns of co-occurrence of reasoning abilities in people vs. LLMs. While

LLMs are quite capable of reproducing human-like behavior on many tasks, the �ne-grained way in which their

abilities pattern is strikingly di�erent from what we see in people. This di�erence suggests a deeper di�erence in

how people and LLMs think, with LLMs relying frequently on heuristic solutions where people exhibit deeper

reasoning abilities. This motivates the search for an architecture of human cognition that can model these

deeper reasoning abilities.

A range of case studies show that human and LLM reasoning abilities pattern di�erently. I’ll look at just

a few here – starting with simple cases which make diagnosing errors easy and progressing to instances of

everyday reasoning, where we see similar errors. Start with multiplication. Most schoolchildren learn a simple

algorithm, longform multiplication, for solving multiplication problems. This algorithm has children break

down a multiplication problem potentially involving two large numbers into a series of smaller multiplicaiton

problems and then a sum of the results (see �gure N for details). After learning the algorithm, children (and

adults) may make mistakes computing the numbers – especially mistakes like forgetting to carry or simple

arithmetical errors – but the algorithm can in principle be applied to numbers of arbitrary size. Multiplying two

�ve digit numbers, for example, is not a di�cult task.

LLMs like those in the GPT series can also solve some multiplication problems, but their abilities show

a strikingly di�erent pattern. GPT-4, for example, shows near ceiling performance (close to 100%) for

multiplying 2 by 2 digit numbers (e.g. 72 x 89), but performance drops o� precipitously as the numbers get

bigger. The model 92% accuracy on 3-digit-by-3 digit problems, to 4% accuracy on 4x4 digit problems. When

asked to multiply 5 digit by 5 digit numbers, GPT-4 is near �oor performance (near 0% accuracy, see Figure N).

This held regardless of whether the model was asked to write out its reasoning (akin to using pen and paper) or

102 Sometimes called the ‘Scaling Hypothesis’ (Gwern 2020) – the idea being that a connectionist system that matches the
human brain for scale (100 trillion parameters, rather than the hundreds of billions or trillion parameters of today's models)
would be a good model of human cognition.
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to generate answers outright. It held when the model was given further examples of multiplication problems, as

question-answer pairs or with full trains of reasoning demonstrating the longform multiplication algorithm. It

held even after the models had been extensively ‘�ne-tuned’, i.e. subject to further training, on tens of thousands

of multiplication problems (Dziri et al. 2023; Choi 2023).

(A) (B)

Figure 2: (A) An instance of longform multiplication of the kind schoolchildren learn. GPT-class struggle to

learn this algorithm or any other solution to multiplication. (B) Pattern of errors seen in GPT-4 by number of

digits in the input – performance on 1-digit-by-1-digit problems (top left) is at ceiling, while performance at

5-digit-by-5-digit problems is at �oor. (Graph reprinted from Dziri et al. 2023).

Why does GPT’s performance on multiplication drop o� so precipitously as problems get larger? And

why does extensive further training not change this pattern? One possible explanation for this behavior is if the

model were solving these problems by making extensive use of memory, without learning a corresponding

general solution to fall back on when memory turns up blank. A memory-based solution would exhibit just this

striking pattern of failures. If we consider just the 2-digit-by-2-digit multiplication problems, there are about

6,000 of them. This is small enough that a model like GPT-4 which is trained on trillions of words has likely seen

most of them. By the time we get to 5-digit-by-5-digit problems, there are over 8 billion such problems, and it

becomes unlikely that a model will have seen more than a small fraction of them. As the size of the problems

increases exponentially, LLM performance drops precipitously.

There are, of course, many di�erent ways that memory might be used to solve these problems. One

possibility is memorizing question-answer pairs, the way a student might cheat on a test, but this is not the only

possibility. Other memory-based strategies might involve memorizing intermediate results of the longform

multiplication algorithm, or memorizing statistical dependencies between individual digits in the input numbers
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and individual digits in the output numbers. There’s some evidence that this last is what models are actually

doing. For example, they tend to get some digits right and some wrong for large problems (Figure N). Those

they get right tend to be digits like the �rst and last digit which are statistically easiest to predict from the input

digits, e.g. because the last digit depends only on two digits of the input values, rather than many (Dziri et al.

2023).

This pattern of errors, suggestive of LLMs struggling to learn principled solutions to problems, can be

seen in other domains as well. Take planning. Ida Momennejad and colleagues at Microsoft Research looked at a

large set of state of the art LLMs and assessed them for their ability to extract a structured map of an

environment from a passage of text and then to plan a route over that map. For example, they’d feed the model a

vignette describing how a series of rooms are connected by hallways ‘you enter a room, room 1, and walk

through an open door to room 2,’ and then ask the model to either reproduce the underlying graphical structure

or to plan over that graph, for example, ‘�nd a route to room 7.’ Models were generally able to reproduce the

graphical structure, outputting triples of the form {room, opendoor, room}, but struggled to plan e�ectively

over that structure (see Figure N). The best performing model, GPT-4, succeeded about 30-40% of the time on

the hardest graphs, with other models performing considerably worse. The hardest graphs had 15 and 21 nodes.

When it came time to plan, LLMs would frequently hallucinate edges, proposing moves between unconnected

rooms, they would get caught in loops, revisiting the same rooms repeatedly while trying to navigate elsewhere,

and they’d miss obvious paths, especially when those paths were not explicitly stated in the original vignette, but

instead implied by the network structure (See Figure N). For comparison, people who can navigate Cambridge

and Somerville are able to plan on a graph with several hundred nodes,103 while formal studies of human

planning suggest that people are capable planners (for example, they are better modeled by optimal models than

by heuristic models, Callaway et al. 2022). This pattern of errors suggests that the capacity to recover the

structure of an environment and then plan over it is comparatively lacking in LLMs.104

104 Similar patterns of errors are seen when models are asked to plan in other domains – rearranging small numbers of blocks
(e.g. Valmeekam et al. 2023).

103 The number of intersections in these towns: https://dataverse.harvard.edu/dataverse/osmnx-street-networks
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(A)

(B)

Figure 3: (A) Example prompt given to LLMs and the underlying graph. Models were tasked with various

planning problems over the resulting graph, including planning a traversal and planning a detour when one path

was broken. (B) Models struggled with these planning tasks, hallucinating edges, missing obvious paths, and

getting caught in loops. (Both reprinted from Momennejad et al. 2023).

A �nal example of such failures comes from Theory of Mind (or ToM). ToM is the ability to infer

other people’s mental states from their actions. People have a profound capacity for ToM. They infer rich

information about agents’ desires from very simple actions, such as how an agent explores a space (Baker et al.

2017). They infer �ne-grained, quantitative relations between the agent’s costs and bene�ts based on the paths

agents take (Jara-Ettinger et al. 2016). And they accurately infer agent’s goals even when the agent’s actions are

relatively ine�cient ways to achieve those goals, ostensibly by reasoning about agent’s plans, which are often

imperfect (Zhi-Xuan et al. 2020). Signs of some of these capacities, e.g. assessments of preferences, costs, and

bene�ts, are seen even in very young infants looking time behavior (Liu et al. 2019).

LLMs appear to struggle to reason about other minds. False belief tasks o�er one case study here. One

part of ToM reasoning is the ability to keep track of other agents' beliefs, including when the content of those

beliefs di�ers from the way we know the world to be – i.e. when agents have false beliefs. Classic psychological

tests probe this ability by presenting people (generally young kids) with vignettes in which a character acquires a

false belief about the world and then asking people questions about what that agent will do, where the answer

depends on the content of their beliefs. If kids are able to keep track of the agent’s beliefs as distinct from their
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own representation of the environment, then they’ll accurately predict the agent’s ine�ective actions. So, for

example, kids might be given a story in which two characters are in a room, the �rst places an object in a box

before leaving, and the second character moves the object to a second box before the �rst returns. Kids are then

asked where the �rst character will look for the object upon returning. Being able to solve the task requires

children keep track of the mental state of the �rst character as distinct from the state of the environment.

Recently, researchers have been exploring whether LLMs can keep track of false beliefs by giving them

the same tests. Intriguingly, GPT-4 appears to be able to solve these tests, showing near perfect performance on

vignettes with this classic structure (substituting the names of characters and objects so as to avoid a direct

match to previously published studies, which may have been in the training data of large models) (Kosinski

2023, Bubeck et al. 2023). Similar to the multiplication example above, however, stepping outside of familiar

problem instances reveals shortcomings. While GPT-4 is at near ceiling accuracy for vignettes with the same

underlying fact pattern as those used in classic psychology experiments, it stumbles badly when tested on new

vignettes, which di�er in critical respects that change the �nal answer. So, for example, if the vignettes are

changed so that the second character moves the object ‘onto’ the second box, rather than ‘into’ it, or if both

boxes are transparent, the model still suggests that the second character will look in the original location (i.e

accuracy drops from ceiling to �oor) (Ullman 2023, Shapira et al. 2023). On the face of it, this suggests that

what the model had actually learned was a pattern of facts and answers wedded to the original vignette type,

rather than a generalized capacity to track other minds.

This is not the only explanation available for these failures. Another possibility is that GPT-4 doesn’t

understand the signi�cance of transparency for the agent’s epistemic state, perhaps because the model is trained

only on text. This explanation, while tempting, sits poorly with the observation that GPT-4 seems to have an

intimate understanding of transparency in other cases. Asked whether a person who is hungry and walks into a

room with a transparent (or opaque) box containing their favorite food, GPT-4 gives answers that sensibly turn

on the person’s visual awareness of the food (see Figure N). Since these vignettes are almost certainly in the

model’s training data (as a staple of developmental psychology papers) a natural explanation for these failures is

that the model has learned to give the answers suggested by the original vignettes, rather than the adjusted

versions. That is, the model exploits a memory-based strategy for tracking mental states in these vignettes, rather

than reasoning about how minds work.
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Figure 4: Other questions posed to GPT-4 suggest a nuanced understanding of how transparency a�ects the

accessibility of information, suggesting that a lack of this kind information is not responsible for its failures on

the altered ToM vignettes from (Ullman 2023).105

These are three cases where models fail to �nd general solutions to their problems where people succeed.

These failures with big models are reminiscent of failures well-documented in smaller models (see McCoy et al.

2019) and consonant with the kinds of memory-based solutions that have been revealed by careful mechanistic

investigations into these models (for example, documenting that models learn skip-trigram statistics in order to

deliver on in-context next word prediction, see Olsson et al. 2022). Results like these and others suggest that

models of this class are �nding super�cial, albeit sometimes extremely subtle, strategies for solving the problems

posed to them, in lieu of the more general strategies that underwrite the human ability to, say, reason about

other minds or perform multiplication.

This discussion is, of course, far from de�nitive. Future evidence could turn this conclusion on its head.

But the current evidence suggests that, despite their successes at tasks like relevance, LLMs fall short of o�ering

us an architecture capable of the kind of cognition seen in people. This motivates the search for a new

architecture, one that can combine the ability to tractably compute relevance with more principled ways to

reason about the resulting contents.

105 Generations from GPT-4 in July, 2023

127



V. Bespoke Model Construction

We’ve seen that LLMs are capable relevance functions, but also some evidence that they struggle to

learn to reason as consistently as people. Is there a way to have both relevance and reliable reasoning? This

section lays out a high-level proposal. The basic idea is to use a dedicated relevance function to deliver a set of

considerations relevant to some task. Once speci�ed, these concepts can be used to build a model. Approximate

normative operations of the kind that have long been used to model thought – bayesian updating, consistency

checking, algorithmic planning – can then be computed in this model. In principle, the operations within the

model can be kept tractable by keeping the model small (cf. Brooke-Wilson 2023). Such a system could reason

over anything, although only a small number of things at once. The hope of such a system would be that

reasoning over the most relevant things could approximate reasoning over everything.

5.1 Model Construction Overview

We can spell this out in stages to make the idea more concrete. We start out with a problem

representation, whether a description of the problem in natural language or some language of thought. The

problem can be anything that people solve in cognition (as opposed to perception or motor control). Reasoning

and planning problems will be canonical cases here.106 The problem representation is �rst (1) fed into a relevance

function – perhaps implemented by an LLM or something else. The relevance function outputs a set of

representations. These are couched in a language of thought with the structure to support familiar

approximations to normative operations, for example, using probabilistic operators to capture degrees of belief,

or graphical primitives to express graphs. As its name suggests, a good relevance function should output those

representations which are relevant, in a sense to be made precise, to the task at hand. In the second stage (2),

these representations serve as the raw materials for a process of model construction, during which a formal model

of the problem domain is synthesized. Because the model is written in a language of thought, it can support

familiar operations – computations for Bayesian updating, consistency checking, or classical planning

algorithms. In the third stage (3), these operations are computed over the constructed model, resulting in

106 That is, high-level planning problems – problems that abstract away from motor control. Planning your errands for the
day counts as cognition, the precise sequence of movements involved in grasping is part of motor control (Mylopoulos
2021).
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candidate answers to the task – e.g. probabilistic estimates over variables (i.e. credences) and executable plans. A

fourth and �nal stage (4) involves checking these outputs against the task demands that started the process,

assessing whether the end result of computation in the model answered the question at hand (if the original

problem was a question) or whether the output plans deliver the desired goal (in the case of a planning

problem). I’ll say more about each of these stages in turn. Note however, that they are only meant to o�er a

proof of concept. Toward the end of the section, I’ll �ag some of the ways in which the reality might be

considerably more complex.

To present this idea in more detail, consider the example that started this paper. We are trying to

determine whether Bob is likely in his o�ce. On the current view, the goal of our cognitive operations when

confronted with this task is to come up with a model meeting the following speci�cations – it should support a

normative operation of belief �xation, and it should include the body of considerations (i.e. the subset of my

evidence and linking hypotheses) that bear most directly on the question at hand. The �rst step here is to query a

relevance function. If this is an LLM or similar model, the query could be the natural language question ‘Is Bob

in his o�ce?’. On other occasions, the input to the relevance function could be a sentence in the language of

thought, or a vector from another neural model. At this stage, all that’s needed is a representation of the

question that is su�cient for determining relevance when fed into a relevance function.

The next step cares more about the details of the representation. Here the relevance function outputs a

set of representations which can be composed into a structured model, of the kind that will support familiar

operations like those discussed above. The relevance function should also output a particular operation that will

be computed in the resulting model – for example, bayesian updating or prediction if the problem is a reasoning

problem, or planning operations if the problem is a planning problem. This is like choosing which tools are

appropriate to solving the problem (see Figure 6). There are many candidates for such structured

representations. Di�erent formats will be applicable for di�erent kinds of tasks. A natural class of

representations to reach for is code. Code, like thought, is highly �exible. Much like thought, code can represent

everything from a list of beliefs, to a map, a 3D scene, or a physical model capable of simulation. Model

construction might involve any of these. Sticking with our motivating example, when wondering whether Bob is

in his o�ce the relevant considerations might include: the fact that Bob is often in his o�ce on days when he

teaches; that if Bob is out of town then he’s not in his o�ce; that Agustin’s presence makes Bob’s more likely
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because they’re friends; and that Bob is often at the APA when it is in session. These will serve as the basis for

model construction in the next stage.107

A natural question is what counts as a ‘relevant’ consideration. The goal of the entire model

construction process is to build a model such that approximate normative operations computed over that model

will best approximate the intractable application of the corresponding normatively ideal operations over the

totality of the agent's beliefs. Representations are relevant insofar as they improve this approximation and

irrelevant insofar as they make little di�erence. This is a graded concept of relevance and one that is highly

relative (a particular consideration can be relevant in certain conditions, say, if considered on its own, but not in

others, for example, if other considerations screen o� its impact). [This idea can be expressed precisely. For

example, if the goal of the process is to build a model such that approximate bayesian inference in the model best

approximates the posterior you would get if you could compute exact bayesian inference over the totality of your

evidence,108 then the decrement to the divergence between small model and ideal model posteriors delivered by

an edit to the small model gives an exact quantitative measure of relevance. For a planning problem, where the

objective is to maximize the expected utility of planning in the model on the expectation de�ned by your total

evidence, the difference in the expected utility of the resulting plan that results from adding a consideration to

the small model gives a precise measure of relevance to planning. It is a challenging, and deep, question how the

learnable components of such a system can be trained to approximate this intractable objective. (I return to this

question in the next section.)]

Returning to our process of model construction, the second stage involves the actual synthesis of a

model using the outputs of the relevance function as raw materials. The relevance function may be involved here

as well. On di�erent versions of the architecture the relevance function may output a simple list of building

blocks, a full model, or be called recursively to build a model piecemeal. If we imagine the simplest case, where

the relevance function outputs a model, then this process is much like asking an LLM to output functioning

code. If instead the model is built piecemeal, this is like asking an LLM to navigate a tree of edits to a program

resulting in functioning code. Where the relevance function can’t be relied on, say, because the code to be

generated is too novel or sophisticated, many other search techniques are available. These include stochastic

search techniques, which make random edits biased by various heuristics, in e�ect taking a random walk in the

108 Or some suitably idealized abstraction over your evidence, if your evidence does not deliver a coherent model.

107 Note that which relevant considerations are output by the relevance function (and so come to mind) on any particular
occasion will be a function of what description of the problem is input to the relevance function. This means that slightly
di�erent ‘framings’ of the problem might result in di�erent outputs (i.e. di�erent things ‘coming to mind’).
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direction of a successful program, and enumerative techniques, which explore a portion of the space of possible

programs exhaustively, exploiting clever ways to compress the space to make the search tractable. Combinations

of these methods (neural, stochastic, and enumerative) have proven e�ective at managing large search spaces and

continue to be explored for the particular case of code and model synthesis (see Ellis et al. 2020, Wong et al.

2023). The result of this stage is, in the case of belief �xation, a model in which connections between what is

known (our evidence, observed or recalled from memory) and what we would like to know (the question at

issue) are explicitly represented. The resulting model might include, for example, a variable of interest,

Bob_in_his_office, evidence variables such as Day_of_the_week and Term_in_session, and the probabilistic or

causal connections between them. A model of this kind supports Bayesian updating, delivering an estimate of

whether, based on the evidence deemed relevant, Bob is likely to be in his o�ce.

Finally, there is a stage on which the results of such reasoning and planning are checked against the

world, ensuring that our models remain moored in reality and o�ering a learning signal for the parts of this

process that are learned, such as the relevance function. What ‘checking’ looks like will depend on the question

that started this process. In the simple cases of belief �xation, we will at times get feedback from the world – Go

check: Is Bob in his o�ce? If your mental model assigned high probability to ‘yes’ and he’s not there, you might

have overlooked something. That disconnect provides a signal that can be used to improve your relevance

function. The same goes for simple cases of planning – are you able to �nd an e�ective plan for the goal in the

model you’ve constructed? Does acting on that plan in the world produce the desired e�ects? In many other

cases, however, checking directly against the world may not be possible. In these cases, we may check through

further re�ection – drawing on memory or further reasoning. How does this verdict about Bob square with

what I remember about MIT’s class schedule, or what I can deduce about Agustin’s whereabouts? When the

stakes are low or checking is hard, checking may be skipped altogether. When checks are failed – e.g. we discover

a con�ict between a current inference and a remembered fact – that con�ict may be fed back into the relevance

function to begin a new episode of reasoning aimed at reconciling the con�icting data. Thus con�icts in

reasoning can be resolved with more reasoning.

Here I’ve presented this process as a series of four discrete stages, but this is merely meant as a proof of

concept. More plausible versions of the view are likely to di�er in how the di�erent stages trade-o� between one

another. For example, while the above explication suggests a single call to the relevance function to de�ne a set of

concepts and beliefs relevant to the task, it seems more likely there would be repeated calls during model

construction, interleaved with various kinds of checking. This is because partially constructed models and the
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checks they pass or fail can supply important context for determining relevance. If a model in a partial state of

construction is missing a concept that can causally tie two variables together, for example, information like this

can be an important input into a relevance function (as in the abduction task discussed in Section III). Similarly,

there may be good reasons to interleave the stages of model construction and model checking. Some checks will

be applicable to partially constructed models, and whether partial models pass or fail such checks can provide

critical guidance to the process of construction.109 The space of ways to �esh out an architecture of this kind is

vast. And a plausible account of human cognition would doubtless involve considerable complexity. What each

of these potential realizations have in common is that they approach the problem of general purpose cognition

by focusing computational power on computing over small bespoke models built using a large body of domain

general information.

Figure 5: First three steps of the architecture. In the �rst, a relevance function takes in a task speci�cation and

outputs a set of relevance considerations. Next, model construction takes in these considerations and outputs a

model or models. Finally, familiar computational operations for reasoning and planning are computed in the

resulting model(s). The second and third steps involve operations that are intractable when computed over a

large domain, but here are computed only over a domain circumscribed by the relevance function. (Note that

plausible versions of this view will be less serial in their operation.)

109 Checks that could apply to a partial model include type checks or the application of a value function (see Silver et al.
2016). Knowing how a model fails to pass a check can provide information to a relevance function – today’s LLMs can
make simple edits to some code in light of the bugs it produces when run, albeit with weak reliability.
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5.2 Reasoning With Bespoke Models

How does an architecture of this type improve reasoning? Start with the multiplication discussed

above. Here the basic idea is simple: Taking a pure learning approach that attempts to learn multiplication from

nothing more than pairs of numbers (or series of numbers in the case of training with intermediate values) is a

hard learning problem. There are many, many ways that numbers can be associated that partially overlap with

multiplication. Picking multiplication from among the bunch is challenging without some bias. In contrast,

even a very �exible model can learn to associate word problems with the calls to a calculator, if a calculator is

among a reasonably small number of tools it has access to. Assuming a model has access to the right primitives,

learning to build a calculator may also be an easier learning problem than learning to multiply from scratch. This

seems to be the case with today’s LLMs. While GPT-4 struggles profoundly with multiplication when asked to

do it itself, it has no problem making the syntactically appropriate calls to a calculator. It’s even able to write the

code to build a calculator, using python’s high-level arithmetical primitives, when prompted (see Figure 6). This

is a very simple version of the idea above. Instead of learning to reason, which represents a very hard problem, a

Model Construction architecture of the kind on o�er here, learns to build and use the kinds of models that

natively support reasoning in principled ways.110

110 Note that GPT has probably presumably seen the code for a calculator many times in its training data, so this is not a
statement about GPT’s generalization abilities, just about the relative ease of learning to piece together the functions for a
calculator vs. learning to calculate. Even if GPT has memorized the code for a calculator, it shows that this memorization
task is easier than memorizing a general solution to multiplication in the weights of the network.
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Figure 6 While GPT struggles to learn a general algorithm to multiply two numbers, with near zero accuracy

for 5x5 digit multiplication, it can learn to generate the code for a functioning calculator using arithmetical

primitives and to make appropriate calls to a calculator for much larger multiplication problems.111

We can apply a similar approach to the ToM case. Computational models representing agents, their

beliefs, desires, and actions, can reproduce feats of reasoning, as evinced by much modeling work in cognitive

science (discussed in Section 3). On their own, these models are limited in their explanatory power. We can’t

assume that people have just the models required to reason about a given experimental setup in their minds

when they walk into the laboratory and that makes it di�cult to know what to make of the �t between people

and a given cognitive model. But we can explain people’s systematic behavior on ToM tasks with an architecture

that can synthesize small models when faced with a novel task. If cognition works this way, then the synthesized

models in the mind could deliver the behavior captured by the scienti�c models by supporting the very same

kind of reasoning. We can see one way this idea could go in current work exploring the possibility of using LLMs

to translate between natural language and a probabilistic language of thought. Wong, Grand, and colleagues

used an LLM to translate between naturalistic dialogue and code for several tasks, including a simple ToM task.

By translating successive sentences like ‘people can either bike or walk’ and ‘Alex loves sushi, but hates pizza’ into

lines of code in a high-level programming language, their system slowly built up a model that could support

ToM style reasoning (see Figure 8). Once constructed, a model of this kind can support systematic performance

111 Generations from GPT-4 in July, 2023
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on a broad set of tasks, including inference to an agents’ goals, predictions about their actions, and

counterfactuals about what they would do in di�erent environments. Each of these types of ‘queries’, or

questions posed to the model, can be computed in one and the same model using di�erent familiar

operations.112 The ability to edit and generate models on the �y expands this coverage further. Armed with the

concept of an agent, for example, such an architecture could reason systematically in situations involving

di�erent numbers of agents – always deploying one and the same concept. Of course, such a model will also

exhibit some failures of systematicity, when di�erent environments that call for the same representations are

nevertheless represented di�erently, because of a necessarily imperfect relevance function. Far from being a

shortcoming, this could give an architecture of this kind a way to explain some of the failures of systematic

reasoning seen in people, such as framing e�ects, where the way a problem is posed has undue in�uence on the

answers people arrive at.113

Figure 7: A sketch of how a model might go from a perceptual or natural language representation of a scenario

to a structured language of thought representation that can support familiar approximations of normative

operations like bayesian inference or classical planning. Fed an image of an environment, calls to an LLM are

made to produce code de�ning a simple set of actions, agent preferences, and a code based translation of

questions to ask of the model ‘What do you think Alex will do?’ (from Wong, Grand, et al. 2023).

There is nothing special about theory of mind here. The same methods can apply to arbitrary domains.

This generality comes from two properties of the model. The �rst is the broad coverage delivered by LLMs and

similar models. Serving as relevance functions, these systems are extremely expressive, and can map highly

unstructured data of arbitrary format to an equally arbitrary space of possible outputs. The second property is

the expressivity of code, which can support arbitrary computations and data types. Jointly, these properties

mean that an architecture of this type is unlimited in important respects (I’ll discuss some of its important limits

113 See Dasgupta et al. (2017) for some early exploration of a sympathetic account of framing e�ects.

112 Approximate Bayesian inference, prediction, and counterfactual evaluation, respectively.
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in the next section). This means that an architecture of this type can help explain the success of models is the

many areas of human cognition where such models have been applied, intuitive physics (Battaglia et al. 2013,

Allen et al. 2020), concept learning (Goodman et al 2011, Piantadosi et al. 2016), planning (Ho et al. 2022), and

beyond.

The availability of an architecture like this reshapes important debates about what computational

models teach us in computational cognitive science. On the face of it, computational models using familiar

approximations to normative operations have been shown to provide strong qualitative and quantitative �ts to

human behavior across a range of domains. There has been a lively debate about what lessons we should take

from this. A realist perspective holds that the computational processes described by the model are implemented

in the course of human cognition, while an antirealist perspective views the processes of human cognition as

merely input-output equivalent to those described by the model. A problem for the realist perspective is

explaining how the human mind could possess the huge diversity of small models needed to realize the familiar

operations described by the models of computational cognitive science. The architecture o�ered here makes the

realist position on this issue tenable. It expands our theory of cognitive operations to include not just the

operations reproduced by a cognitive model, but also those performed by the cognitive modeler. A general

capacity for model construction explains how, wherever we seem to look, we �nd modelable operations.

VI. Conclusion

We started this paper wondering how domain general cognition is accomplished despite the massive

computational costs suggested by models of thinking. These costs have led many theorists to skepticism about

the possibility of domain general cognition consistent with the computational theory of mind. AI has faced

similar practical and theoretical challenges, and similar skepticism about the tenability of its ultimate goals.

Answering this challenge in both cognitive science and AI requires a way to approximate normative operations

over large bodies of belief. In this paper, I’ve attempted to answer these in-principle challenges and sketch a path

forward. I’ve argued that a class of methods in contemporary AI, large language models, get us part of the way

there, by answering skeptical arguments to the e�ect that tractably computing relevance is impossible.

Empirically, such systems tractably compute many aspects of relevance. These systems answer longstanding

skeptical arguments by o�oading much of the work of reasoning about relevance to prior learning – using large

amounts of data and weak assumptions to learn highly context-sensitive relevance relations. The success of such

systems opens up, arguably for the �rst time, the space to propose and evaluate domain general cognitive
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architectures. LLMs o�er a natural candidate architecture. Despite their initial success with relevance however,

LLMs do not seem to capture important aspects of human reasoning. Current evidence suggests that these

models generally fail to learn normative operations that people manifestly do. This can be seen in domains as

diverse as arithmetic, planning, and theory of mind. Such failures motivate the search for a new architecture for

human-like cognition. I’ve o�ered one alternative view, designed to exploit the powerful relevance function

capabilities of LLM-like systems while making space for approximations to normative operations. On this view,

LLM-like systems are used to tractably compute the relevance of various considerations which serve as the basis

for the construction of small models in which normative operations can be tractably approximated. Finally, I

showed how this view links up with the large body of empirically validated models from computational

cognitive science. Positing an architecture which can synthesize these models in response to task demands o�ers

a route to a realist explanation of the empirical successes of Bayesian computational cognitive science.

If correct, this view of how the mind works has consequences for several other areas of philosophy,

including epistemology, decision theory, and philosophy of AI. Start with epistemology. Traditional

epistemology asks the question, what does my evidence support? In real human reasoning however, there is

another epistemological question that is always prior to this one – namely, what is relevant to think about? Only

once the mind has determined what is relevant to consider can we get to evaluating the bearing of any evidence

on our prior beliefs. How the mind determines relevance is liable to have profound impacts on what beliefs we

come to. The consequences of the relevance strategy adopted are liable to ramify throughout one’s belief system,

as subsequent updates build on one another. The same is true for our values. Practical reasoning depends on

determining which of the very many things we value is relevant to consider on a given occasion. What we

consider will have signi�cant impacts on what we decide. There is a great deal of work to be done in

epistemology and the philosophy of action to tease out the normative principles that govern relevance

judgements and the epistemic and practical implications of failures to follow these norms.

Commitments about cognitive architecture also have consequences for decision theory. Traditional

decision theory aims to model how agents ought to make decisions. Classically, an agent is modeled with all of

her beliefs and their entailments in view when making decisions. Fragmented decision theory has been

developed as an alternative. It attempts to build a decision theory with more realistic assumptions about the

limits on which of her epistemic commitments an agent can ‘see’ at any one time. People are generally limited to

a small subset of their beliefs and small subset of their entailments. For such fragmented agents, an essential part

of decision theory is deciding how to move between fragments – bringing di�erent beliefs and entailments into
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view. Fragmented decision theory is clearly tackling an important problem. It is limited however, by a lack of a

theory of what ‘fragments’ actually amount to and what kinds of ‘moves’ between fragments are realistically

available to an agent. The cognitive architecture developed here makes a start on answering these questions.

Fragments are mental models, and the ‘moves’ between them are a diverse set, including computing in a model,

building a new model, editing an existing model, and building a model to reason about another, among others

Each of which will produce very di�erent kinds of transitions between fragments. A normative theory that

strives for psychological realism (motivated by the idea that ought implies can) should think about the norms

that govern such transitions. (In doing so, decision theory can lay the normative foundations for the

construction of cognitive architectures.)

Finally, there are implications of this view for the philosophy of AI. Right now the hope in much of the

�eld is that scaling the current models to the size of the human brain will deliver human-level intelligence. The

current line of thought suggests that this might be wrongheaded. Unaided connectionist models struggle with

things like approximating normative operations beyond toy domains (as we move, for example from 2-by-2 digit

multiplication to 5-by-5, or from planning on a small graph to planning on a larger graph). Such operations are

di�cult to acquire in a data-driven way because, as problems get larger, the number of data points necessary to

pin down the relevant function increases rapidly. Based on the current evidence, we can venture that genuinely

big problems, like reasoning and planning on the scale of many hours and coordinated steps, could prove

particularly challenging for pure connectionist models. If these problems turn out to be an important roadblock

in the way forward for AI, a turn toward more human-like bespoke model construction may be prudent. Such

systems need not have very much built into them – a few familiar operations for reasoning and planning and the

basic architecture of model construction – but these basic pieces may provide signi�cant leverage on problems

that are di�cult to tackle with data and parameters alone.
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