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EXPERIMENTS ON THE TWO-ENVELOPE PROBLEM

The two-envelope paradox is a vexing probability problem. Its conclusion is so

absurd that we are forced to question the validity of our mathematical approach.

A student in the residential version of Paradox and In�nity suggested

running a simulation to verify the conclusion of the two-envelope paradox. That

was also my thinking. Having worked with simulations before, I knew that they

were quick and easy to program. I decided to run a computer simulation of the

two-envelope problem in order to reassure myself that the conclusion was wrong

(so probability theory is out of danger) and, more importantly, to identify where

the calculations went awry.

Turns out that the calculations are pretty much all correct. Only the very

last logical leap is wrong. In this paper, I intend to shed light on the two-envelope

paradox. I will focus on Broome’s variation of the problem and use the results of

my simulation to identify which results hold and which do not.

The Two-Envelope Problem

Let’s start by restating the two-envelope problem so we are all on the same page.

I will also use this occasion to introduce the notation I will be using in this paper.

A curious man o�ers you to play a curious game. He chooses a natural

number randomly (we will come back to this random choice in a moment). He

puts that amount of money in one envelope, which we will call E1. He then puts

double that amount in another envelope, which we will call E2.
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The two envelopes are indistinguishable to you. You do not know which

one is E1 (and therefore contains the smaller amount) and which one is E2 (and

therefore contains the bigger amount). The curious man asks you to choose one

of the two envelopes. The envelope you pick will be your envelope, and the

envelope you leave out will be his envelope or the other envelope.

After you have made your choice, the curious man invites you to look at

the contents of your envelope. You take a peek. You see that your envelope

contains n dollars.∗

Now comes the tricky part. The curious man o�ers you to either keep your

envelope, or to switch and take his envelope. Should you keep or switch?

To answer this question, we need to specify how the curious man chooses

his natural number. In the original problem, we assume that the distribution is

uniform, i.e. each natural number has the same probability of getting picked.

The solution then goes like this: after seeing that your envelope contains

n dollars, you know that the other envelope contains either n/2 dollars or 2n

dollars. Given the uniform distribution, each of those two possibilities is equally

likely. Your expected value if you keep your envelope is EV [keep] = n. Your

expected value if you switch is

EV [switch] = n

2
1
2 + 2n

1
2 = n

5
4 .

∗This formulation of the problem, where you get to know the contents of your envelope, is

slightly easier to work with than the original formulation, where you contemplate but do not

know the contents of your envelope. The calculations and the conclusion remain the same.
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To maximize your expected value, you should switch. No matter what n you

saw in your envelope, you should always switch. Therefore, you don’t even need

to look at the contents of your envelope to know that you should switch. That

conclusion goes straight against common sense.

Worse still, if you looked at the contents of the other envelope but not

yours, a similar reasoning would lead us to say you should always keep.

Broome’s Variation

Simulating a uniform distribution on natural numbers is, I dare say, impossible. I

thus focused on Broome’s variation of the two-envelope problem. The setting is

the same, except for the way the curious man chooses his natural number.

The curious man tosses a die. If he gets 1 or 2, he stops. If he gets 3, 4, 5 or

6, he tosses the die again. Let’s say he stops after k tosses. The curious man then

puts 2k−1 dollars in envelope E1 and 2k dollars in envelope E2.

Once again, you get to pick an envelope and look inside. You see that it

contains n = 2m dollars. Now you have to decide whether you want to keep your

envelope or switch. To maximize your expected value, what should you do?

Let’s get to work and calculate the conditional expectations. If n = 1, then

you know for certain that the other envelope contains 2 dollars and you should

de�nitely switch.

For n > 1, seeing n = 2m dollars in your envelope means that either E1 = 2m

or E2 = 2m. Knowing that you picked your envelope randomly and knowing how
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the curious man �lled the envelopes, we can work out that

P [other envelope = 2m+1] = P [your envelope is E1 and E1 = 2m] = 2m−1
3m+1

P [other envelope = 2m−1] = P [your envelope is E2 and E2 = 2m] = 2m−2
3m .

Finally, we can calculate your expected value if you switch, given that your

envelope contains n = 2m dollars.

EV [switch] = 2m+1 P [other envelope = 2m+1] + 2m−1 P [other envelope = 2m−1]
P [other envelope = 2m+1] + P [other envelope = 2m−1]

= 2m+1 25 + 2
m−1 3

5 = 2m 11
10

Once again, we reach the perplexing conclusion that you should always

switch, no matter what amount n = 2m you saw in your envelope.

Simulation

I ran a simulation of Broome’s variation of the two-envelope problem on my

computer. The results were both disappointing and enlightening.

In short, it con�rmed that once you know the contents of your envelope,

you should always switch. Switching actually does increase your expected value.†

It is worth noting at this point that there is no paradox without conditioning

on the contents of your envelope. The unconditional expectations are easily

shown to be EV [keep] = EV [switch] = ∞.
†That was a surprise to me. I was expecting the simulation to show that you should be

indi�erent. I explored this result by changing the parameters of my simulation and I �nally

understood why it made sense, but that’s a discussion for another day.
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This unconditional indi�erence is borne out in my simulation. Let’s use

AV to denote the average value from my simulation, i.e. the empirical version

of EV . In my simulation, when I stop at 500 runs, I obtain AV [keep] ≈ 105

and AV [switch] ≈ 103. Roughly speaking, the more runs I simulate, the higher

the average values become (they do not converge), but neither AV [keep] nor

AV [switch] dominates.

Moreover, there is no paradox if we condition on the number of die tosses,

or on the contents of E1 or E2. That is also con�rmed by my simulation results.

What about the expected value of keep and switch, given the contents of

your envelope? For the most part, my simulation con�rms the analytical results.

For instance, if I look only at the simulation runs where your envelope ends

up containing 2 dollars, I obtain AV [keep] = 2 and AV [switch] ≈ 2.2. In runs

where your envelope contains 4 dollars, my simulation yields AV [keep] = 4 and

AV [switch] ≈ 4.4. And so on.

Wait a second! How can the unconditional averages be equal if AV [switch]

is greater thanAV [keep] in every conditional setting? Well, I left out a tiny detail.

See, the simulation is �nite. There is always one biggest amount generated in the

simulation. When your envelope contains that biggest amount, you should keep,

according to the simulation. There may be other big amounts that are seldom

generated and for which the simulated averages don’t show the 11/10 ratio we

expect, but the very biggest amount is the worst o�ender.

With an in�nite simulation, all amounts would be generated an in�nite
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number of times, so we would not get those rare-event oddities. But with a �nite

simulation, we cannot conclude that, given the contents of your envelope, you

should always switch. There is an exception to that rule, and that exception

carries a big weight in the unconditional averages (because it is a big amount).

Revisiting the Analytical Solution

Without conditioning on the contents of your envelope, can we really say that you

should always switch? To reach that conclusion, we would need the unconditional

EV [keep] < EV [switch].

By the law of total expectation, we have

EV [keep] =
∞∑

m=0
EV [keep | your envelope = 2m] P [your envelope = 2m]

EV [switch] =
∞∑

m=0
EV [switch | your envelope = 2m] P [your envelope = 2m].

Each term of the EV [keep] sum is strictly smaller than the corresponding term of

the EV [switch] sum. However, both sums diverge to in�nity, so we cannot leap to

the conclusion that EV [keep] < EV [switch] unconditionally. The unconditional

expectations EV [keep] and EV [switch] are in fact unde�ned.

I would like to point out that, as hinted by my (�nite) simulation, the

paradox disappears if we limit the possible number of die tosses. Let’s say that if

the die tossing process exceeds M tosses, then the curious man scraps the whole

sequence and starts afresh.

If we condition once again on the amount you see in your envelope, we

always have EV [keep] < EV [switch] except when your envelope contains 2M
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dollars. Because of that exception, we no longer conclude that you should always

switch, so there is no paradox anymore.

If we approached the two-envelope problem through the �nite variation I

just described, and then let M →∞, we would dodge the paradox.

Conclusion

The apparent paradox in the two-envelope problem comes from the leap from

conditional expectations to unconditional expectations. The conditional expecta-

tions are �nite. It makes sense to compare them. The unconditional expectations

are unde�ned (in�nite), so it does not make sense to compare them.
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